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ABSTRACT. - We prove some weak and strong comparison theorems for
solutions of differential inequalities involving a class of elliptic operators
that includes the p-laplacian operator. We then use these theorems together
with the method of moving planes and the sliding method to get symmetry
and monotonicity properties of solutions to quasilinear elliptic equations in
bounded domains. © Elsevier, Paris

RESUME. - Nous prouvons quelques theoremes de comparaison faible et
fort pour solutions de certaines inequalites differentielles liees a une classe
d’ operateurs elliptiques qui comprend le p-laplacien. Ces theoremes sont
utilises avec la methode de « deplacement d’ hyperplanes » et la methode de
« translation » pour obtenir des proprietes de symetrie et de monotonie des
solutions d’ équations elliptiques quasilineaires dans des domaines bornes.
© Elsevier, Paris .

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In recents years several researches were devoted to the study of properties
of solutions to elliptic equations involving the p-laplacian operator (see
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494 L. DAMASCELLI

[1], [4], [7]-[ 11 ] and the references therein). The difficulties in extending
properties of solutions of strictly elliptic equations to solutions of p-Laplace
equations are mainly due to the degeneracy of the p-laplacian operator. In
particular comparison principles widely used for strictly elliptic operators
are not available when considering degenerate operators. In this paper we
consider a class of second order quasilinear elliptic operators with a "growth
of degree p - 1", 1  p  oc, which includes the p-laplacian operator and
prove for them some comparison results. More precisely we consider the
operator -div A(x, Du) in an open set 03A9 C N > 2, and we make
the following assumptions on A:

with 1  p  oo and for suitable constants ry, r > 0.
In the case of the p-laplacian operator A = ~L(?7) == 
In section 2 we prove different forms of weak and strong (maximum and)

comparison principles. The proofs are based on simple estimates contained
in Lemma 2.1 below that "explains" why maximum principles hold without
special hypotheses about the degeneracies, while comparison principles are
not in general available if p 7~ 2 in their full generality (see the remark
after Lemma 2.1).
We begin with forms of weak maximum and comparison principles that

extend to general p a similar theorem proved in [3] for p = 2. If the constant
A which appears in these theorems is zero then they are formulations of
classical weak principles, while if A > 0 they are weak formulations of
the " maximum principle in small domains " proposed in [2] for strong
solutions of strictly elliptic differential inequalities.

In what follows Q will be an open set in N > 2 and A a function

satisfying ( 1-1 )-( 1-4) for p ~ ( 1; oo ) . Moreover all inequalities are meant
to be satisfied in a weak sense.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



495COMPARISON THEOREMS FOR QUASILINEAR

THEOREM l.l (Weak Maximum Principle). - Suppose S~ is bounded and
u E r1 L°’°(SZ), 1  p  ~, satisfies

where A > 0 and g E C(SZ x satisfies g(x, s) > 0 if s > 0 [g(x, s)  0

if s  0]. Let SZ’ C S~ be open and suppose u  0 [> 0] on ~S~’.
Then there exists a constant c > 0, depending on p and on 03B3, h in ( 1-3),

(1-4), such that if  c then u  0 [> 0] in 03A9’ (where || stands

for the Lebesgue measure and 03C9N is the measure of the unit ball in In

particular if l~ = 0 then ~’ can be an arbitrary open subset of SZ.

Let us put, if u,v are functions in and A C SZ

THEOREM 1.2 (Weak Comparison Principle). - Let SZ be bounded and

u, v E satisfy

(1-6) -div A(x, Du)+g(x, u) -Au  -div A(x, Dv )+g(x, v) -Av in S~

where A > 0 and g E C ( SZ x R) is such that for each x E S~ g (x, s ) is

nondecreasing in s for s ~  ~. Let SZ’ C SZ be open
and suppose u  v on ~S~’.

(a) if A = 0 then u  v in S~’, V p > l. 
’

(b) if p = 2 there exists b > 0, depending on A and ~y, h in (1-3), (1-4),
such that if  b then u  v in SZ’.

(c) if 1  p  2 there exist S, M > 0, depending on p, ~1, ~y, h, ~ and

M~, such that the following holds: if SZ’ = Al U A2 with ~A~ t~l A2 ( = 0,
]  b and MA2  M then u  v in S2’.

(d) if p > 2 and m03A9 > 0, there exist b, m > 0, depending on p, A,
03B3, r, |03A9| ‘ and such that the following holds: if SZ’ = A l U A2 with
~A~ n A2~ ] = 0, ]  b and > m then u  v in SL’.

Remark 1.1. - As we shall see from the proof if p > 2 it is enough to
suppose E n L°° (S2). If p > 2 and A > 0 to use the theorem
we need to know that + |Dv| ( is bounded from below by a positive
constant, and this is a serious restriction in applications. On the contrary
if 1  p  2 we do not have to worry about the degeneracies (provided

Vol. IS, n° 4-1998.



496 L. DAMASCELLI

u, v E W 1 w" ( SZ ) if p  2) and this makes the theorem useful, as we shall
see in section 3. D

Remark 1.2. - The typical way we use Theorem 1.2 is the following.
Suppose that f2 is a bounded domain, f e C(n and u, v e 

are respectively a weak subsolution and a weak supersolution of the equation

Then u and v satisfy (1-6) with g(x, s) = As - f (x, s), V A > 0.
(i) Let be nonincreasing in s for x fixed and s ~ 

If u  v on for an open subset f2’ of SZ, then
u  v in S~‘ by Theorem 1.2 (a). This particular case of Theorem 1.2 (a)
has been proved in [10] by Tolksdorf.

In particular if u and v are both solutions of equation 1-7 and have the
same boundary data on ~03A9 then they must coincide.

(ii) Suppose next that f (x, s) is not nonincreasing, but there exists

a A > 0 such that s) == s) - 11s is nonincreasing in .5

for |s|  (e.g. f(X,8) is (semi)locally Lipschitz
continuous in s uniformly in x).

If 1  p  2 by Theorem 1.2 (b) and (c) (with A2 = 0) there exists
8 > 0 such that for any open set 0’ C S~ with ( ~’ ~ ]  ~ the inequality u  w
on implies that u  v in f2’.

This is a weak formulation and an extension to the case 1  p  2 of the

"maximum principle in small domains" of [2]. If p > 2 we get analogous
results under nondegeneracy hypotheses.

(iii) In the case 1  p  2 Theorem ( 1.2) (c) implies a quite interesting
and singular result. In fact suppose again that is nonincreasing
in s for s in the range of u and v and that 1  p  2. Then by Theorem 1.2
(c) (with Ai = 0) there exists M > 0 such that for any open set f2’ C ~
the inequality u  v on 8f2’ implies the inequality u  v in f2’ provided
Mo’ == + M.

Note that this statement is a comparison principle which holds without
any assumption on the size of f2’ but rather on the smallness of and

This is, in general, not true even when p = 2.
Furthermore, as we shall see in section 3, we can use the theorem more

generally when we can decompose the domain in two subdomains, one
having small measure while on the other the functions involved has small
gradients. D

Next we deal with a form of the strong comparison principle. The strong
maximum principle is well known for the kind of operators we are talking

Annales de l’Institut Henri Poincaré - Analyse non linéaire



497COMPARISON THEOREMS FOR QUASILINEAR

about and can be obtained via Hopf Lemma (see [10] and [13] for particular
cases) or as a consequence of a Harnack type inequality (see section 2). We
shall follow the second approach to derive a strong comparison theorem.
First we prove the following Harnack type comparison inequality.

THEOREM 1.3 (Harnack type comparison inequality). - Suppose u, v satisfy

where ~1. and u, v E if p ~ 2; u, v E rl if
p = 2. Suppose B(xo, 503B4) ~ 03A9 and, 2, infB(x0,503B4) (|Du| + > 0.
Then for any positive s  N 2 we have

where c is a constant depending on N, p, s,11, b, the constants ~y, h in (1-3),
(1-4), and 2 also on m and M, where m = 
M = 

Theorem 1.3 implies the following strong comparison principle.

THEOREM 1.4 (Strong Comparison Principle). - Let u, v E C1 (f2) satisfy
(1-8) and define Z = {x + = 0} if p ~ 2, Z = Ø
if p = 2.

If x0 ~ 03A9 B Z and u(xo) = v(xo) then u = v in the connected component
of f2 B Z containing xo.

Remark 1.3. - By the previous theorem if u, v satisfy (1-8) in a domain S~
and + |Dv| > 0 in Q then u > v in 0 unless u and v coincide in f2. In
[10] Tolskdorf proved (via Hopf Lemma) a strong comparison principle for
solutions of a suitable quasilinear equation, under the hypothesis that one of
the two functions is of class C2 with its gradient away from zero. Since the
solutions of problems involving the operator A are usually (for p ~ 2) in the
the class (see [4] and [11]), Theorem 1.4 is more natural and allows
the functions to have vanishing gradients, although not simultaneously if

p ~ 2. Moreover u and v need not to solve a particular equation. D

If in (1-8) A = 0 we can get further results, as the following corollaries
show. The first one is a corollary to Theorem 1.2 (a) and, in the case when
the set S defined below is compact, it has been proved in [8] by another
method. The second one is a corollary to Theorem 1.4 (and Corollary 1.1).

Vol. 15. n° 4-1998.
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COROLLARY 1.1. - Suppose d, v E satisfy

Let us define S _ ~x E ~ : u(x) = v(x) ~. IfS is either discrete or compact
in f2 then it is empty.

COROLLARY 1.2. - Let u,, v E satisfy (1-10). Let us define
Z = {x E f2 : D~u(x) = Dv(x) = 0~ and suppose that either

(a) f2 is connected and Z is discrete
or

(b) Z is compact and Z is connected.

Then u  v unless v.

Remark 1.4. - Let ~c, v E C 1 ( ~ ) n L°° ( SZ ) be respectively a weak

subsolution and a weak supersolution of equation (1-7) with u  v in SZ .

Suppose that there exists a 11 > 0 such that f (x, s) + As is nondecreasing
in s for s in the range of u and v (e.g. f (x, s) is (semi)locally Lipschitz
continuous in s uniformly in x). Then u and v satisfy (1-8) and Theorem 1.4
applies. In particular if f (x, .) is nondecreasing we have (1-8) with A = 0
and we can use Corollary 1.1 or Corollary 1.2. D -

In section 3 we apply the previous comparison theorems to the study of
symmetry and monotonicity properties of solutions to quasilinear elliptic
equations. For simplicity we consider here the case of the p-laplacian
operator that we denote by Ap, so that -0394pu stands for -div 
but the same method applies to any operator that satisfy conditions (1-1)-
(1-4) as well as natural symmetry conditions (see [3] for the case p = 2).
Let 03A9 be a bounded domain in N > 2, which is convex and symmetric
in the xi-direction and consider the problem

In their famous paper ([5]) Gidas, Ni and Nirenberg used the method
of moving planes to prove (among other results) that if p = 2 every
classical solution to (1-11) is symmetric with respect to the hyperplane
To = ~ ~~ = ( ~ ,1, x’ ) E = o~ and strictly increasing in x 1 for

xi  0, provided n is smooth and f is locally Lipschitz continuous. As a
corollary if Q is a ball then u is radial and radially decreasing. Since then
many papers extended the results and the method in several directions. In

particular Berestycki and Nirenberg in [2] improved the method by using a
form of the maximum principle in domains with small measure. If p ~ 2 the

de l’Institut Henri Poincaré - Analyse non linéaire
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problem is much more difficult since the operator is degenerate and partial
results were obtained under special hypotheses on the solutions and/or on
the nonlinearity. In [9] it is proved, using symmetrization methods, that if

a ball, p = N (the dimension of the space) and f is continuous with
f ( s ) > 0 if s > 0, then u is radial and radially decreasing. In [7] symmetry
results are obtained for solutions that in suitable spaces are isolated and

have a nonzero index. In [1] ] symmetry in a ball is obtained under the

crucial hypothesis that the gradient of the solution vanishes only at the

center of the ball (which is then the only point of maximum).
Here, using the method of moving planes as in [2] and the above

comparison results, we obtain the symmetry of the positive solutions when
1  p  2 under quite general hypotheses on the set of the points where the
gradient of the solution vanishes. In the general case we slightly generalize
the result of [ 1 ] with a simpler proof. To state more precisely the symmetry
results we need some notations.

Let 0 be a bounded domain in N > 2, convex and symmetric in
the x1-direction ( i. e. for each x’ the set {x1 ~ R : (x1, x’) E is

either empty or an open interval symmetric with respect to 0). For such a
domain we set - a = infx~03A9 x1 and for - a  A  a we define

(xl , ~’ ) let xx = (2A - be the point corresponding to x
in the reflection through ~’a and if u is a real function in f2 let us put

= whenever x, E S~. Finally if ~c E C~- (SZ) we put

and

THEOREM 1.5. - Let 1  p  2 and ~c E a weak solution of ( 1-1 I )
with f locally Lipschitz continuous. Suppose that the following condition
holds:
- if a  0 and Ca is a connected component of 03A903BB then Ca B Z03BB is

connected, with the analogous condition .satisfied by C03BB B Z03BB for 03BB > 0.
Then ~c is symmetric with respect to the hyperplane To = ~x E (~~~T :

x~ = 0~ (i.e. ~.c(x1, x’) _ if (x1. x’) E SZ) and u,(xi, x’) is

nondecreasing in x 1 for x 1  0 (and (x 1, x’) E SZ).

Vol. 15. n° 4-1998.
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The condition in the above theorem is in particular satisfied if the set Z
is discrete. In this case the solution is strictly monotone:

COROLLARY 1.3. - Suppose that Z is discrete (and 1  p  2). Then

x’) is strictly increasing in x 1 for x1  0 and if SZ = B(0, R) then u
is radial and radially strictly decreasing.

THEOREM 1.6. - Let ~c E be a weak solution of problem (1-11),
where p > 2 and f is locally Lipschitz continuous. Suppose that the

set where the gradient of u vanishes is contained in the hyperplane
To = ~~ E I~N : x1 = 0~. Then u is symmetric with respect to To and

x’) is strictly increasing in ~1 for ~1  0.

COROLLARY 1.4 [ 1 ] . - Let 03A9 be a ball B {o, R) in N > 2 and suppose

f is locally Lipschitz and u E is a weak solution of (1-11) whose
gradient vanishes only at the origin. Then u is radial and radially strictly
decreasing.

Next we apply the previous comparison principles together with the
"sliding method" as in [2] to get the monotonicity of solutions to suitable
quasilinear elliptic equations. We illustrate the method with a simple
problem which is a generalization to the p-laplacian operator of an analogous
problem studied in [2]. It shows that in some case the sliding method yields
better results than the moving planes method for degenerate equations. This
happens because we have a strict inequality between the functions involved
on the boundary of suitable open sets and we can use Corollary l.l. Let

us begin with some notations. Let SZ be a bounded domain in N > 2,
convex in the x1-direction and consider the problem

with f continuous and § E ~’1 (c~SZ) satisfying the following condition: if

x‘ _ (x1, y) ; x" = (xl , ~) E and x1  x1 then

We consider solutions of (1-12) satisfying the following condition: if

x’ , x" E ~03A9 are as before and x = with x i  x 1  x 1 then

If T > 0 let us put SZT = ~ - Tel (where el = (1, 0, ... 0)) and

ur(x) _ u(x + Tel) for x E S2T. Then we define Dr = 03A9 ~ 03A9,

Annates de l’Institut Henri Poincaré - Analyse non linéaire
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Tl = sup{ > 0 : Ø} and ZT = {x E DT : = = 0}
for 0  T  Tl.

THEOREM 1.7. - Let ~c E be a weak solution of (1-12), (1-14)
with f locally Lipschitz continuous and 1  p  2. Suppose that for
each T E (0, Tl ) and each connected component CT of DT the set

ZT is connected. Then u is nondecreasing in the x1-direction (i.e.
if xl  x2) and if the set Z = ~~ E SZ : Du(x) = 0~ is

discrete then u is strictly increasing in the x1-direction.

THEOREM 1.8. - Suppose that f is continuous and nondecreasing and
~c E is a weak solution of (1-12), (1-14) with 1  p  oo. Then

~c is strictly increasing in the xl-direction and is the only solution to the
problem (1-12) that satisfy ( 1-14).

Remark 1.5. - Note that no hypotheses on p, Z or ZT are required in
Theorem 1.8 by assuming f nondecreasing and only continuous. D

2. PROOF OF COMPARISON THEOREMS

In this section we prove the comparison theorems stated in section l.

Throughout this section SZ will be an open set in N > 2, and A a
function that satisfy ( 1-1 )-( 1-4) for a p with 1  p  ~. We begin with a
simple lemma that provides the estimates necessary for the sequel.
LEMMA 2.1. - There exist constants cl, c~, depending on p and on the

constants ~y, h in (1-3), (1-4), such that V r~, r~’ E with ~ ~ ~ + >

0, V x E S2 :

where the dot stands for the scalar product in In particular, since (1-2)
holds, we have for anv x E SZ, r~ E 

Moreover for each x E SZ, ~, r~’ E I~N we have:

Yol. 15, n° 4-1998.
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Proof. - Since (2-1) and (2-2) are symmetric in r~, r~’ we can suppose
] > ~r~~, ~r~~~ > 0. From (1-1),(1-2) we get for j = 1 ... N:

Using (1-3), (1-4) we have that

Since |~’ + t(~ - ~’)| _ ( (1 - + t~| (  |~| + |~’| ] Vt E [0, 1] if p > 2
(2-7) yields (2-1), while if 1  p  2 (2-8) yields (2-2).
To get (2-1) for 1  p  2 we have to prove that

Analogously to get (2-2) for p > 2 we have to prove that

To this end observe that if ( r~ - r~’ ~ ]  2014 I then (since ~ ( > 

so that (2-9) and (2-10) hold with c = ( 1 )P-2 .
If instead |~ - ~’| > |~’| 2 > 0 and we put to = |~’| |~-~’| I 

E (0,2) then

If 1  p  2, for any to E (0, 2) we have that fo t1P-2 dt 
2 Jo1 zP-2 dz = p 21 so that (2-9) holds with c = ( 4 )P-2 p 21, If p > 2, for
any to E (0, 2) we have that 10 Ito - t|p-2 dt > zP-2 dz = 1 p-1(1 2)p-1
so that (2-10) holds with c = ( 1 )P-2 1 ( 1 )p- y

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Finally (2-5) and (2-6) are immediate consequences of (2-1) and (2-2)
because 117 - r~’ C _ ~ ~l ~ + ~ ~l’ ~ E f~ ~’ . D

Remark 2.1. - In our applications ~, ~’ will be gradients of 
functions, so that they will be bounded but possibly approaching zero. If
1  p  2 then (2-1) blows up when 1171 + r~’ ~ ] approaches zero and the
natural estimates are (2-5) and (2-2). Unfortunately (2-5) and (2-2) are not
symmetric, in the sense that the former is an estimate "of order p", while the
latter is an "order 2" estimate. Analogously if p > 2 the natural estimates
are (2-1) ("of order 2") and (2-6) ("of order p") which are asymmetric.
This is the reason why we are forced to use (2-1) and (2-2), both of the
same "order 2", when studying comparison principles. If p ~ 2 this causes
problems when the gradients of the functions involved are close to zero
and requires special hypotheses on the sets where their gradients vanish (of
course no problem arises when p = 2). Note however that (when r~’ = 0)
(2-3) and (2-4) are both of the same "order p" for each p > 1 and this

explains why maximum principles hold without restrictions for any p > 1,
while comparison principles are, in general, not available when p 7~ 2. D

If u, v E n and 03B2 E x tR) we say that (in a
weak sense) 

/ -i-- A / r% I , n/ I

if for each nonnegative (/? E C°° (~2) we have

If f2 is bounded and u, v E W 1 ~p ( SZ ) n L°° ( SZ ) since /3 is continuous

and (2-3) holds, by a density argument (2-12) holds for any nonnegative
p E 

Similarly by u  v on af2 (in the weak sense) we mean (~c - v)+ E
Wo ’g ( SZ ) . Of course if u and v are continuous in SZ and satisfy u  v
pointwisely on ~03A9 then they satisfy the inequality also weakly.

In the sequel we shall use the following

LEMMA 2.2 (Poincare’s inequality). - Let ~2 be a bounded open set and
suppose n = A U B, with A, B measurable subset of S~. If u E 
1  p  oo, then

Vol. 15, n° 4-1998.
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where p’ = p p-1.
Proof. - We slightly modify the proof in [6], where the lemma is proved

for A = S~, B == 0, using potential estimates. Define h(~, ~) _ ~~~ ’
and suppose ~’ is a measurable subset of S~. If R > 0 is such that

!C1 == ( observe that

If f E LP (C) by Fubini’s Theorem for almost every x E SO

f(y) E LP(C). Let us define YC f (~) _ ~c f(y) h(x,y) dy.
Then we have by (2-14) and Holder’s inequality

Taking the p power and integrating in x over f2 we obtain, using again
Fubini’s Theorem and (2-14) with C = f2 and the role of x and y
interchanged,

Now if u ~ C~c(03A9) then we have the representation (see Lemma 7.14 in [6] )

so that if f2 = A U B we have that  +

VB From {2-15) we obtain (2-13) for u E and the general
case follows by density. 0

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof of Theorem l.l. - Let us prove the assertion when ~c  0 on c~~‘,
the other case being perfectly analogous (with u+ substituted by u-). By
hypothesis ~c+ e and can be used as a test function in (2-12)
yielding

where [u > 0] == {x E n’ : u(x) > 0~. Since g(x, u)u > 0 and (2-4)
holds we get

where C2 is the constant in (2-4), and from (2-13) (with B = 0) we infer that

p

So if C2 > A(~) 
" 

it must be 0 = ~ ~ = and

i~+ = 0 in ~’. D

Proof of Theorem 1.2. - It is analogous to the previous proof with
estimate (2-4) substituted by (2-2) and (2-6). Using (~ - ~)+ e ~~(~)
as a test function we get

Since g(x, ~c) > g(x, v) if ~c > v we get

If p > 2 and A = 0 from (2-6) we get c2 ~~,  0 so that

(u - v ) + = 0 in f2’ and we have (a) in the case of p > 2.

Vol. 15, n° 4-1998.
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In all other cases we use the estimate (2-2): if p = 2 we get, using (2-13)
(with B = 0) as in the previous theorem

/ / B ~
where c2 is the constant in (2-2). So if 11 |03A9’| 03C9N  c2 we get

~(u - v)+~W1.20(03A9’) = 0 so that (u - v)+ == 0 in SZ’ and we have (a)
and (b) for p == 2.

If 1  p  2 and SZ’ == A~ U A2 with ~A1 n A2 ~ = 0 we have, using
(2-13) for p = 2,

From this we infer that if and MA2 are small or A = 0 we must have,
for i = 1,2 , = 0 so that _ ~

and ( ~c - v ) ~ = 0 in f2’ and we have (a) and (b) for the case 1  p  2.

In the case of p > 2, A > 0 we get the same inequalities with M~, M.~z
substituted by mo, from which we deduce (d). D

Before proving the strong comparison principle given by Theorem 1.4 let
us recall the statement and the proof (using an Harnack type inequality) of (a
version of) the strong maximum principle. We shall see that the differences
between the strong maximum and the strong comparison principle are

similar to those between the weak maximum and the weak comparison
principles. The following theorem is a particular case of a more general
result proved by Trudinger (see [12, Theorem 1.2]).

THEOREM 2.1 (Harnack Type Inequality). - Suppose that v E n

L~ (S2) satisfies

for a constant l~ E ~. Let x~ E SZ, b > 0 with B(~o, 5~) c S~ and s > 0
with s  ~’_,~P_ ~~ if p  N, s  ~c if p > N.

Annales de I’ lnstitut Henri Poincaré - Analyse non linéaire
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Then there exists a constant c > 0 depending on N, p, s, l~, b and on the
constants ~y, h in ( 1-3), ( 1-4) such that

Of course here and elsewhere in f means essin f if the functions involved
are not continuous. In Trudinger’s paper the theorem is proved for operators
that satisfy (2-3) and (2-4) (derived in our case from other structural

conditions). The following strong maximum principle follows at once from
the Harnack inequality.

THEOREM 2.2 (Strong maximum principle). - Suppose that SZ is connected
and v E n ~’° (S~) satisfies (2-16). Then either v - 0 in SZ or
v > 0 in f2.

Proof. - Suppose v(xo) = 0 with Xo E H. Then the set 0 = {x E
Q : v(x) = 0~, which is closed relatively to 0 since v is continuous, is

nonempty. Since v is continuous, if v (x) = 0 and 8 > 0 is such that

B(x, 5b) C SZ, then v = v(x) = 0. From the Harnack inequality
we have that fg. ~ for some s > 0 so that v = 0 in B(x, 2~),
because v is continuous and nonnegative. So O is also open and since f2
is connected it must be O = f2. D

As in the case of the strong maximum principle the strong comparison
principle given by Theorem 1.4 follows immediately from the Harnack

comparison inequality (Theorem 1.3) whose proof is deferred to the

Appendix.

Proof of Theorem 1.4. - We can suppose that 03A9BZ is connected and, as in
the proof of Theorem 2.2, we have to prove that C~ _ ~ ~ E f2 B Z : u(x) =

v(x)} is open. If x E O we have + > 0 and by continuity
there exist 8 > 0 and m > 0 such that B(x, 503B4) C SZ and + |Dv| >
m > 0 in B(~, 5b). Since 0 = v(x) - u(x) = (v - u), by
Theorem 1.3 we have ~8~~,2s) (v - u) 0, so that u = v in B(x, 2~)
and 0 is open. D 

’

Proof of Corollary l.l. - Suppose S ~ ~. We shall prove that ~c  v in

S, which is a contradiction. If S is compact let B an open set containing
S with B compact C ~; if S is discrete for each .r e 5’ let B = Bx be
a ball such that B C 0, B n S = ~x~. In both cases c~B n S = 0 so that
v > ~c on 9B and there exists E > 0 such that v - E > u on the compact

Since v - E C1(B), v - E > u on and
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Theorem 1.2 (a) yields v - E > ~c in B. In particular v > u in S. D

Proof of Corollary 1.2. - Suppose u f v in S~, then ~c ~ v in SZ B Z.
In fact if u v in then by continuity u ~ u on 9Z. In case (a)
r~Z = Z, so that u v in f2. In case (b), since D(u - v) = 0 in Z, it

follows that u - v is constant in each connected component C of ( Z) ° .
For any such component C, we have that in C u - v is a constant that
must be zero because C n c~Z ~ 0. So u - v in f2 and this shows that if
u f v in f2 then u t v in 

Since u ~ v in which is connected (in case (a) because N > 2) by
Theorem 1.4 we have u  ~ in So S = (x u(x) == ?;(~)} C Z
is discrete or compact and hence by the previous corollary it is empty. D

3. PROOF OF SYMMETRY AND MONOTONICITY RESULTS

Proof of Theorem 1.5. - If 03BB  0 the functions u, ua satisfy the equation

with f locally Lipschitz continuous. By Theorem 1.2 (c) (see Remark 1.2)
there exist 8, M > 0 such that 0, S2’ is an open subset of S2a
with f2’ = A1 U A2,  b, = +  M and
u  ua on ~03A9’, then u  u03BB in f2’. If A > -a and 03BB + a is small then

]  8. Moreover if x E ~ ~03A9 then u(x) = 0  u(xx) = 
if instead x E n Ta then xx = x and u = So u  t~B on aSZa
and as remarked by Theorem 1.2 (c) (with A2 = 0) we get u  ua in S~~
for A > - a, A close to - a. 

’

Let us define Ao as the sup of those A E ( - a, 0) such that for each
~c E ( - a, A) we have u  ~c~ in S~~ . If we show that Ao = 0 then by
continuity u  uo in S~° with nondecreasing for xi  0 and the

same procedure in the symmetric half SZ° yields u - uo. Suppose that
. Ao  0. Then by continuity u  uao in Since u  uao in by
Theorem 1.4 (see Remark 1.4) in each connected component of we

have u  uao unless u and uao coincide. If Cao is a connected component
of then by the convexity hypothesis on 03A9 there exists x E ~03A9 n 
such that E f2 (because Ao  0) so that 0 = u( x)  ). From
this we infer that u ~ uao in any connected component of Since

is open and connected by hypothesis and it is a subset of 
we deduce that u  in 2~o , unless u - uao in 2ao . On
the other hand arguing as in Corollary 1.2 we have that if u - in
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Z03BB0 then U - in Since we saw that this is not possible we
get U  in Zao for each connected component Cao of f2Ào and
we conclude that U  in 

Let C = {x E u(x) = u(x03BB0)} ~ Z03BB0. Since Du = Du03BB0 = 0
in C there exists an open set A with C C A C 03A903BB0 such that

= + |Du03BB0 ( )  M 2. Let K C 03A903BB0 be compact with

~ S~~o B  ~. In the compact K~ B A C C is positive
and it has a positive minimum there. There exists E > 0 such that, by
continuity, ~o + E  0 and for Ao  A  ~o + E we have  8,

= +  M and ~c > 0 in K B A in particular
on a(K B A). Moreover for such A we have u on (K B A))
(if xo is a point on that boundary either Tx where u = ua or ~SZ

where 0 = ~c  or else c~(I~ B A) where as observed u  ux).
Since (K B A) is the disjoint union of Al = K and A2 = K n A
from Theorem 1.2 (c) we infer as before that u  ~ca in (K B A) so
that u  ua in for Ao  A  Ao + E  0. This contradicts the definition

of Ao and ends the proof. D

Proof of Corollary 1.3. - If Z is discrete so is for each a  0 and from

the previous proof we deduce that for each A E (-a, 0) we have u  ux

in Za. If x’), x’) E S2 with ~1  ~1  0, ~ _ and

Zx then x’)  x’). If x’) = Du(W , ~’) _ ~
since Z is discrete there exist zi E with 0. By the
previous argument we have x’)  x’)  x’), so x’)
is strictly increasing for xi  0.

If 03A9 = B(0, R) and Z is discrete we can repeat the proof for any
direction, so u is radial and radially strictly decreasing. D

Proof of Theorem 1.6. - The proof is similar to that of Theorem 1.5 but
simpler. If the points where the gradient of u vanishes are contained in To
then for any A E (-a, 0) we have Zx = 0 so that, if we know that u ~ u03BB

in for A  0, by Theorem 1.4 we get, as in Theorem 1.5, that U 
in Moreover, since for any A  0 we have + > m > 0

in S~ a , we can use Theorem 1.2 (d) to get the weak inequality u  in

small domains contained in provided A  0.

More precisely if m1 = > 0 then for each A E ( - a , 2 )
we have |Du| + ml and by Theorem 1.2 (d) there exists 5i > 0
depending also on ml such that ~c  in provided ]  81 and
~c  on Since for A E (-a, 2 ) close to -a this conditions
are satisfied we get, using also Theorem 1.4, that U  in if A is
close to -a.
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Let Ao be the sup of the A  0 such that for each  E ( - a, A) we have
u  u  in and suppose that Ao  0. If we define m2 = 0

we have + |Du03BB ( > m2 in SZa for any 03BB  2° and as before there
exists 82 > 0 such that for A E (Ao, 2° ) if f2’ is an open subset of SZa with
measure less than 82 then u in S~’ provided u on c~S2’.

Proceeding as in the proof of Theorem 1.5 (with 2a = A = we

conclude the proof. D

Proof of Theorem 1.7. - Let us observe that if 0  T  T1 with Tl - T

small then u in Dr. In fact if this were not the case there would
exist a sequence Tn -~ 7-1 and a sequence x~ such that xn E Drn (i. e.
xn, xn + Tnel E SZ) and u(xn) > uTn (xn). For a subsequence, that we still
denote by xn, there exists xi E n such that Xl and xn + ne1 ~

x1 ~ Tlel. By continuity + Tlel), which contradicts (1-13),
since by the definition of Tl necessarily E 

Let us define To as the inf of those T G (0, T1 ) such that for each

o~ E (T, Tl ) we have u  u~ in The theorem will be proved if we
show that To = 0. Suppose that To > 0, then by continuity u  uT° in 

By hypothesis Zro is connected for each connected component CT°
of Dro and as in the proof of Theorem 1.5 we get, using Theorem 1.4,
~c in Dro B Moreover by (1-13),(1-14), we have that U  Uro on

so that the set S = {x E Dro : ~c(~) _ is compact in DT°
and for each xES we have = = 0.

By Theorem 1.2 (c) (see Remark 1.2 (iii)) there exists M > 0 depending
on A2 and S~ ~ such that for each T e ( o, T1 ) and each open A C Dr with

+ |Du|  M in A we have u in A provided U on ~A.

Choose an open set A with S C A C Dro and + |Du0]  M 2 in A. In
the compact A the minimum of is positive and, for T less than
To and close to To, is positive in Dr B A (in particular on 8A). On the
other hand for T less than To and close to To we have + |Du| ]  M
in A with U  ~cT on 8A which by the previous remark implies U  ur

in A. So there exists T’ e (0, To) such that for each T E (T’, To ) we have
~c  ~cT in Dr. This contradiction shows that To = 0. Finally for the case of
Z discrete the proof is completely analogous to that of Corollary 1.3. D

Proof of Theorem l.$. - The proof is very simple and it is based only
on Corollary 1.1. As in the proof of Theorem 1.7 we see that if T  7-1

with 7-1 2014 T small then U  ~cT in Dr. Let To be the inf of those T > 0
such that for each o- E (T, Tl ) we have U  ~ca in As before the

Theorem is proved if we show that To = 0. Suppose the contrary, then
To > 0 and by continuity u  uT° in From (1-13), (1-14) we know
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that u  uTo on ~D0 (because To > 0) and, since f is nondecreasing and
u  we have by Corollary 1.1 (see Remark 1.4) that u in DTo
and, by (1-13), (1-14), also in So the minimum of in DTo is

positive and by continuity u in DT for r less than 70 and close to
ro contradicting the definition of To .

Finally if v is another solution to the problem the same reasoning made
before, with u substituted by v, shows that for any r E (0, T1 ) we have
v  UT in DT and by continuity v  uo = u in Do = S~. Interchanging
the roles of u, v we obtain u = v. D -

APPENDIX

In this Appendix we prove Theorem 1.3, using (2-1), (2-2) to get an
estimate for the difference v - u analogous to the estimate for v used by
Trudinger in [12] to prove Theorem 2.1 when p = 2. Then we can follow
his proof (based on Moser’s iterative technique) closely.

In the proof we shall use the following theorem, which is a particular
case of Theorem 7.21 in [6].

THEOREM A.1. - Let u E W 1 ~1 (B), where B is a ball in and suppose
that there exists a constant K such that

Then there exist positive constants o- and C depending only on N such that

where uB = B ~ ~’B u dx.
Proof of Theorem 1.3. - If (1-8) is satisfied for A  0 then it is satisfied

with A = 0, because u  v. So we can suppose A > 0. In this case if r > 0
then u, v + T satisfy (1-8) and we can suppose v - u > r > 0 (substituting
if necessary v with v + T and then letting ir -~ 0). Let B = 

and T/ E C~ (B), with 0  r~  1. Testing (1-8) with $ = r~2(v - 
/3  0 yields
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Using estimates (2-1), (2-2) we get, if 1  p  2

where ci , c2 are the constants in (2-1) and (2-2), depending on p and on
the constants in (1-3), (1-4). If p > 2 we obtain the same inequality
with the roles of m, M interchanged. In any case we have for any ,~  0:

for a constant Ci that depends on p, ~y, F, A and, if p ~ 2, also on m and
M. By Young inequality we have

so that we get

and finally

with C2 depending on p,-y, r, A and if p ~ 2 also on m and M.
Now (A-3) is an estimate for v - u analogous to the estimate for v used in

Trudinger’s proof of Theorem 2.1 when p = 2. The proof is then concluded
using the Moser’ s iterative technique as in the proof of [12, Theorem 1.2].
For convenience of the reader we recall the details of the procedure.
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Let us put, if h > 0 and -~  t  oo, t ~ 0 :

so that

We put in (A-3) ,~ == -1 and for y E B(xo, 2s ), r  2s we choose
r~ E C1(B) with r~ = 1 in B(y, r), supp r~ C B(y, 2r) and  r . We
obtain, with w = log ( v - u)

with C3 depending on O2 and N. It follows, using Holder’s inequality, that

with C~ depending on C2, N and 8. By Theorem A.I there exist ro > 0
(ro = 2014 with a = a(N)) and C = C(N) > 0 such that

where 2&#x26; ) . As a consequence we have

Recalling that w = log(v - u) and taking the -*- power we obtain

where C’ depends on N and ro depends on C2, N and b.
Next we consider (A-3) when j3  0, ,C~ ~ -1. Let us put for --1 ~ j3  0

Observe that /?  -1 iff  0 while -1  /3  0 iff 0  ?.r; r  1.
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For 8  h’  h"  58 we take r~ E C~ (B) with r~ = 1 in B(xo, h’),
supp ~ C B(xo, hl’) and |D~|  If w = (v - from (A-3)
we get

where [) ( is the norm in Lt(B(xo,h)) and C~ depends on C2 and
8. It follows that

Since E and  we obtain by Sobolev

inequality that if x = N 2 (~ arbitrary if N = 2)

for a constant C6 depending on C2, 6 and N. By the definition of w, q
and r this is equivalent to

Taking the 1 q power we obtain

if q > 0 i. e. -1  j3  0 and 0  r  1.

If instead q  0 i. e. ,C3  -1 and r  0 we obtain

For ro > 0 given by (A-4) and k = 0,1,... let us define r~ == (-To) ~~
and hk = -E- 2 ( 2 )~~. We have that r~ -~ --co, ,Q~ = r~ - 1 --~ -oo and

 1; ho = 2 , h~ -~ b and hk - ( 2s ) 2k+1.
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Iterating (A-6) (where we can suppose C6 > 1) we get

~’ ~r~+1 ~ h~+~ ~

with C7 depending on C’6 and ro.
If 1~ -~ co since r~ -~ - oo, 6 and ~~ = 2 we obtain

where C8 depends on C~, N and ro.
If 0  s  ro we have by Holder’s inequality that

which combined with (A-4) and (A-7) yields

where Cg depends on N and C8, so it depends on N and if

2 also on m and M. This is exactly (1-9)..
If instead ro  s  ~ 2 to get (A-8) we proceed as in the deduction

of (A-7) but taking a finite number of iterations and using (A-5) instead
of (A-6).
More precisely if ro  s  x = N 2 then = ri  ro for a

natural number ko. If we put, for k = 0, ... k0 + 1, r’k = r1~k and
ho = 2s > h1 > ... hk0+1 = 203B4, with hk - hk+1 = 1 k0+1 03B4 2, then for k  ko
we have r~  1 and (A-5) is true.

After ko iterations of (A-5) we obtain as in the deduction of (A-7)

where Cio depends not only on C6 and ri but also on s through the bound

~~’~.o - 1 ~ = 1 - ~ ~
Since (A-4) is certainly true with ri instead of ro and (A-7) can be

deduced exactly in the same way with ri instead of ro, putting together
(A-IO) and (the modified) (A-4) and (A-7) we obtain again (1-9). D
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