@article{AIHPC_1998__15_3_341_0, author = {Ekeland, I. and Ghoussoub, N.}, title = {$\mathbb {Z}_2$-equivariant {Ljusternik-Schnirelman} theory for non-even functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {341--370}, publisher = {Gauthier-Villars}, volume = {15}, number = {3}, year = {1998}, mrnumber = {1629353}, zbl = {0907.58006}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1998__15_3_341_0/} }
TY - JOUR AU - Ekeland, I. AU - Ghoussoub, N. TI - $\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 341 EP - 370 VL - 15 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1998__15_3_341_0/ LA - en ID - AIHPC_1998__15_3_341_0 ER -
%0 Journal Article %A Ekeland, I. %A Ghoussoub, N. %T $\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 341-370 %V 15 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1998__15_3_341_0/ %G en %F AIHPC_1998__15_3_341_0
Ekeland, I.; Ghoussoub, N. $\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 3, pp. 341-370. http://www.numdam.org/item/AIHPC_1998__15_3_341_0/
[A] A perturbation theorem for superlinear boundary value problems, M. R. C. Technical Report, Vol. 1442, 1974.
,[A-R] Dual variational methods in critical point theory and applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. | MR | Zbl
and ,[Ba] Topological results on a certain class of functionals and application, J.F.A., Vol. 41, 1981, pp. 397-427. | MR | Zbl
,[Ba-Be] A perturbation method in critical point theory and applications, T.A.M.S., Vol. 267, 1981, pp. 1-32. | MR | Zbl
and ,[Ba-L] Morse index of some min-max critical points I. Application to multiplicity results. Commun. Pure and App. Math., Vol. 41, 1988, pp. 1027- 1037. | MR | Zbl
and ,[G1] Location, multiplicity and Morse indices of min-max critical points, J. Reine. und. angew. Math., Vol. 417, 1991, pp. 27-76. | EuDML | MR | Zbl
,[G2] Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press, 1993. | MR | Zbl
,[L-Sc] Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. | JFM | Zbl
and ,[R] Minimax methods in critical point theory with applications to differential equations, C.B.M.S., A.M.S., No. 65, 1986. | MR | Zbl
,[S] Variational methods and their applications to non-linear partial differential equations and Hamiltonian systems, Springer-Verlag, 1990. | MR | Zbl
,