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ABSTRACT. - We look for homoclinic solutions for a class of second

order autonomous Hamiltonian systems in R2 with a potential V having a
strict global maximum at the origin and a finite set S C R2 of singularities,
namely V(x) ~ -~ as 0. We prove that if V satisfies a
suitable geometrical property then for any k ~ N the system admits a
homoclinic orbit turning k times around a singularity ~ G S. © Elsevier,
Paris

Key words: Hamiltonian systems, singular potentials, homoclinic orbits, minimization

argument, Palais Smale sequences.

RESUME. - Nous cherchons des solutions homoclines pour une classe
de systemes hamiltoniens autonomes du second ordre dans R2 definis par
un potentiel V ayant un maximum global strict a l’origine et un ensemble
fini S C R2 de singularites: Y(x) -~ -oo quand dist(x, ,S’) --~ 0. Nous
montrons que si V vérifie une certaine propriete geometrique, alors le

systeme possede une orbite homocline qui tourne k fois autour d’une

singularité 03BE E S. (c) Elsevier, Paris
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114 P. CALDIROLI AND M. NOLASCO

- T

In this work we deal with a class of autonomous second order Hamiltonian

systems defined by a potential V having a strict maximum at the origin.
We are interested in finding homoclinic orbits to the unstable equilibrium
point x = 0, namely non zero solutions to

.. 2014 - j ~ , ,

This problem has been widely investigated using variational methods in
several papers (see [AB], [BG], [B], [C], [J], [RT], [S], [T] for existence
results and [ACZ], [Be], [R], [T2] for multiplicity results).

Here we consider the case of a potential with a unique strict global
maximum at the origin. Note that if V is a smooth potential on RN in
general we cannot expect the existence of homoclinic solutions, as for

example in the case of a radially symmetric potential where the only
solution to (1.1) is x(t) 0.

In fact we assume V to be singular on a finite set S, i. e. , as

dist (~ ; ,S’) ~ 0. As it will be clear in the following, this further assumption
reflects in the variational formulation of the problem giving a non trivial
topology to the sublevel sets of the Lagrangian functional associated to (1.1).
Under these conditions the existence of a homoclinic solution has been

proved in [T] and [R]. In particular in the case of planar systems a solution
is obtained by a minimizing argument in the class of functions winding
around a singularity £ E S. Moreover, in [R], supposing an additional
condition about the ratio between the cost to wind the singularity passing
or not through the origin, the existence of a second homoclinic with a
winding number sufficiently large is proved.
Aim of this work is to find homoclinics with an arbitrary winding number

for planar singular systems. We point out that looking for solutions winding
the singularity more than once, a lack of compactness may occur. More
precisely, according to the concentration-compactness principle [L], the

Palais Smale sequences may exhibit a dichotomy behavior. We show that a
suitable geometry of the stable and unstable manifolds near the equilibrium
point together with the fact that ~’ ( x ) ~ - ~ ~ x ~ 2 0 permits to
recover some compactness. As a consequence, the system admits infinitely
many homoclinic orbits characterized by different winding numbers.
We remark that under our assumptions, the condition given in [R] to

obtain the second solution is always verified.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



115MULTIPLE HOMOCLINICS FOR SINGULAR SYSTEMS

me geometrical property assumea in me present paper is satished iur

example by potentials with some discrete rotational symmetry (see theorem
2.4) and by potentials given by the sum of a smooth radial term and a
localized singular perturbation (see corollary 2.8).

Let us remark that the interest of this result lies in the fact that very little

is known about the multiplicity of homoclinic solutions for conservative
systems; we mention here a recent work [BS] where infinitely many
homoclinic orbits of multibump type are obtained for a different class

of autonomous Hamiltonian systems.
Finally we point out that the above considerations on compactness apply

for multiplicity results also in different settings, as for instance, in the

problem of heteroclinic solutions between strict global maxima (see [R2]).

2. STATEMENT OF THE RESULTS AND FUNCTIONAL SETTING

Let S be a finite subset of R2 B ~0~. Let us consider a potential
V : R2 B S‘ --~ R satisfying:
(VI) V E B S, R);
(V2) V(x)  0 for every x E R2 B (,S’ U ~o~);
(V3) V(0) = 0 and V’(x) = -x + as x ~ 0;
(V4) V (x) -~ -oo as dist (x; 5’) 2014~ 0 and there is a neighborhood N 5
of S and a function U E B S, R) such that -~ oo as

dist (x, S) --~ 0 and V(x)  - ~ U’ (~) ( 2 for every x E Ns B S;
(V5) there are R > 0 and a function UCX) E C1(R2 B Bk, R) such that

-~ oo as ~~~ -~ oo and  -~U~(~)~2 for every ~ E R2BBR,
being BR = ~ ~ E R2 : Ixl  R}.

Remark 2.1. - The assumptions (V2) and (V3) imply that the origin
is a strict global maximum point for the potential V and 

+ o( ~~~2) as x --~ o.

Remark 2.2. - The assumption (V4) corresponds to the strong force
condition, introduced by Gordon in [G]. This condition governs the rate at
which V(.r) 2014~ -oo as dist (x, S’) --~ 0. In particular (V4) is satisfied in
the case V (x) == - ( dist (x, S))-03B1 in a neighborhood of S and 03B1 > 2.
The assumption (V5) is formally very similar to (V4) and concerns

the behavior of the potential V at infinity. Precisely (V5) says that 
can go to 0 as ~~~ --~ oo but not too fast. For example (V5) holds if

I-T (.~~)  -a for ~x~ large, being a > 0.

lol. l~. nv I-1998.
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Let us introduce the open subset of 

and the action functional

defined for every u E A. It is known that (/? E and the critical

points of cp in A, i.e., the functions u E A such that c.p’ (u) = 0, are classical
homoclinic solutions to (1.1). We set K == { u E A : p’(u) = 0 , u ~ 0 ~
and, for any c E R, K(c) _ ~ u E K : c.p ( u) = c}.

Since we deal with planar systems and since any u E A is a continuous
function such that u(t) ~ 0 as t -~ any u E A describes a closed

curve in R~. Hence, fixed ç G S we can associate an integer ind ( u )
giving the winding number of u about ~. We recall that if u, v G A and

v(t)~  for every t G R then = indç(v). For
every k E Z we set

We remark that > 0 for any k E G B ~ 0 ~ . Indeed given u E A with
0 there exist su  tu such that = 2~3 ~

and |03BE| 3   2|03BE| 3 for every t E = Iu. In particular

~Iu > Then, since min~t~, ,~2 ~ i - ~ (~ ) = m > 0, we get

> m > 0 with in a positive
constant independent of u. We also point out that -k(03BE) = {u_ : u E
l1~(~) ~ where u_(t~ = u(-t). For the potential V is time independent,
cp(u_ ) = cp(u) for all u E A. Consequently = c_~ (~). Moreover we
notice that c~ (~)  for any k e.N. Indeed if u E then

there is I = [t1, t2] C R such that u(t1 ) = u(t2 ) and ind03BE (u ( I) = 1. Then
defining v(t) = u(t) for t  t1 and v(t) = u(t - tl -~- t2) for t > tl, we
get v E and  

We state a preliminary result, already discussed in [R] and [T], about
the existence of a homoclinic orbit describing a simple curve around a
singularity ~ E S.

THEOREM 2.3. - Let vT : R2 B S ~ R satisfy (V 1 )-(VS). Then for 03BE E S’
(l.l ) admits a homoclinic solution vl E ~1 (~) and cp(vl ) = cl (~)~

Annales de l’Institut Henri Poincaré - Analyse non linéaire



117MULTIPLE HOMOCLINICS FOR SINGULAR SYSTEMS

We remark that the existence of a homoclinic solution is given in [R]
for a potential merely C1 with a periodic time dependence and in [T] for
systems in R~ .
Here we are interested in finding a homoclinic orbit v~ e for any

k E Z B ~ 0 ~, being ~ E ,S‘ fixed.

We prove the existence of infinitely many solutions when the potential
presents a discrete radial symmetry.

THEOREM 2.4. - Let V : R2 B ,S’ --~ R satisfy (Vl)-(V5) and
(V6) V(Rx) = V(x) for every ~ E R2 B S, where R is the rotation around
the origin of an angle 203C0/m with m > 5.

Then, given ~ E ,5’, the system (1.1 ) admits a sequence l of
homoclinic orbits with v~ E ~~ (~) and = 

As we will see, the fact that c~ (~) is a critical level is related to the

existence of homoclinic solutions at the levels cl (~), ... , which

stay asymptotically inside a cone of width strictly less than 
In fact theorem 2.4 follows from this more general result.

THEOREM 2.5. - Let V : R2 B S -+ R satisfy (Vl)-(V5). If
there are (j = l, ... , l~-1) (possibly

v+j = such that for every pair (i, j ) ~ {1, ..., k - 1}2 with z + j  k

then (l.1 ) admits a homoclinic solution v~ E and = 

Remark 2.7. - It is possible to prove that if u E K then there exists

I ,~~t~ ( ~I = x~(~). (This is essentially due to the fact that, thanks to
(V3), C and n ~‘~t~ -~ 0 as t ~ In this

way the condition (2.6) reduces to > 0.

Finally we give other examples of systems for which holds for

any k ~ N.

COROLLARY 2.8. - Let V : R2 ~ S’ --~ R satisf~y (V 1 )-(VS) and one of
the following conditions: either

(V6)~ V(~) == ~~ + where

;0 E 
y’S E C1,1(R2 B S, R) and ~ -~ as dist (x, S) ~ 0
supp Vs C span+{x1, x2} for some x1, x2 E R2 with x2 > 0;

15, n° 1-1998.
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or

(V6)" there are R2 with x2 > 0 such that ~ E x2~
for some ~ E S and Y(p(x)) > V(x) for every x E R2 ~ S.

Then the system (l.l ) admits a sequence of homoclinic
solutions with = I~.

(We denote + ~2x2 : ~z, ~2 > 4 ~ and p the
projection on its closure.)

3. PROOFS

We fix £ E ,S‘ and we put l~~ = l~~ (~) and ck = 
First we prove theorem 2.3. To begin we give some properties of the

sequences C A with bounded.

LEMMA 3.1. - Given a sequence C ~1 such that  o0

it holds that

(i) there is R > 0 such  R;
(ii) there is p > 0 such that > p for all t E Rand n E N;
(iii) (un) is bounded in Hl (R, R2 ).
Proof - (i) By the contrary, assume that for some subsequence, denoted

again -~ oo holds. Using the invariance under translation,
without loss of generality we can assume Moreover

since un(t) -~ 0 as t -~ +0oo, there exists N E N such that for any n > N
there is tn > 0 such that = Rand ] > R for t e (0, tn),
being R given by (V5). Then (V5) yields

ftn

But oo , while cp(un) is bounded. Thus we get a

contradiction.
A similar argument can be followed to prove (ii).

(iii) Fixed 6 > 0 and setting T~ (b) - ~ t e R : ] > ~ ~ we claim
that there is T (b) > 0 such that meas Tn (S)  T’(b) for all n E N; indeed

Annales de l’Institut Henri Poincaré - Analyse non linéaire



119MULTIPLE HOMOCLINICS FOR SINGULAR SYSTEMS

let 03B2(03B4) = inf { f V (x ) k : |x - 03BE| ~ p, d  wnere R > u and

p > 0 are given by (i) and (ii) respectively. Then

Since 03C6(un) is Dounaea ana u . oo, aiso meas n() is Dounaea

uniformly with respect to n E N. Now we observe that, for (V2),
1 r -

and so is bounded in Z/. Now, let us take 6 e (0, )~ ) such that
 for |x|  03B4. Then

/* /t /t

where R > 0, Tn ( b ) and T (b) are defined as above. Hence, using again the
boundedness of we conclude that (un) is bounded in L2 and thus
in D

Lemma 3.I says in particular that any Palais Smale sequence for (/?
is bounded in Hl(R, R2). Then, since we are dealing with autonomous
systems it is possible to characterize in a sharp way the PS sequences,
as already done in [CZES] and [CZR] in the periodic case, with a

concentration-compactness argument [L]. In particular it holds that any
PS sequence (un) admits a subsequence which is generated by a finite set
of critical points wi, ... , Wi E A and definitively the winding number of
its elements can be related to that one of w~ , ... , wl .

LEMMA 3.2. - Let (un) C A be a PS sequence for cp at the level b > ©.
Then there are lEN, w1, ... , E K, a subsequence of (~~ ), denoted
again (un), and corresponding sequences (tn), ..., (t~) C R such that, as

oo, t~ ~ --~ (~ = 1, ... , l - 1) and
~.~ )) / / ,1 v .. ~ / ,1 v~n ~

Vol. 15. n° 1-1998.



120 P. CALDIROLI AND M. NOLASCO

Proof. - We refer to [CZR] to prove (i) and (ii). The property (iii)
follows from the fact that, given vl, v2 E A and a sequence I --~ oc

then definitively vi + v2 ( ~ - and ind(vl + v2 ( ~ - =

+ Indeed, setting pi - inft~R|vi(t) - 03BE| and p =

we can find ~ci G A with compact support such that

 ~P and = ind(vi) follows. Now since o0

we can take n E N such that for n > n, Ul and u2(- - tn) have

disjoint supports and moreover + v2 (t - tr,, ) - ~ ~ > 3 p. Hence
+ V2(t - + d2(t - ]  ( t) + V2(t - tn) - ~! I

for all t E R. Then u1 + u2(. - tn) ~  and ind03BE(v1 + v2(. - tn)) ==

= ind~ (ul ) ~ ind~ (u2 (. - tn ) ) 
a

With the above results we can prove the existence of a first solution

vi G Ai at the level ci.

Proof of theorem 2.3. - By lemma 3.1 (ii), the set l~1 n ~cp  c1 + l~
is closed in H ~ (R, R2 ) . Then, for the Ekeland principle, there is a PS

sequence (un) C Ai at the level ci. Consequently, by lemma 3.2, we have
un = wl ( ~ - tn) ~ ... + wl ( ~ - tn) where l E N, w1, ... , wi E K and

-~ 0. Now we exclude the case l > 1. Indeed, if l > 1, it must be
= 0 for all j = 1,..., l . Otherwise, if ( = m > 1 for

some j then, by lemma 3.2 (ii), ci > cl, a contradiction.

On the other hand the fact that = 0 for all j = 1, ... , l is in

contradiction with lemma 3.2 (iii). Consequently Z = 1. Hence, by (ii) and
(iii) of lemma 3.2, w1 is a critical point of 03C6 such that ci = and

= 1. Thus the theorem is proved. D

We remark that theorem 2.3 can be proved in a different way as done in
[R] just studying the minimizing sequences. Here we prove this result by
using the characterization of PS sequences (lemma 3.2) which is basic in
our argument to get multiple homoclinics.
To prove theorems 2.4 and 2.5, firstly we will show that with the

additional information given by the further assumption satisfies

the PS condition at the level for k > 1. To get this, we have to compare
the value c~. with the sums c~l + ... + where 1~1.... , hl are arbitrary
integers such that A:i + ... = k.
The first step is given by the following technical lemma.

LEMMA 3.3. - For any 03B8 E [o. 2 ) there is be E such that for every
b E there exists T = T (8. ~) > 0 for which for any ~_ . ~+ E R’

Annales de I ’Institut Henri Poincaré - Analyse non linéaire



121MULTIPLE HOMOCLINICS FOR SINGULAR SYSTEMS

satisfying x-.x+ |x-||x+| I > cos 03B8, |x-| == |x+| I = 03B4 and denoting

~ ~7~ ~ ~

then ror 1 = u ana ~+

we agree that mT ~~_ , ~+~ _ ~-oo. )

Proof. - To begin, for  > 0, ~ _ , x+ E R2 let us introduce
m

One can easily calculate the explicit expression given by:

in particular we 

and if x-.x+ |x-||x+| ~ cos03B8 for some 03B8 ~ [0, 03C0 2), then there exists T =

T(~y; 8,  -~-oo such that .

inf mT[03B3;x-,x+] = mT[03B3; x-, x+] = 03B3 2[(|x+|2 + |x-|2)2 - (2x-.x+)2]1 2.

Let us fix ~  1-sin03B8 1+sin03B8. We note that by (V3) there exists be > 0 such

that - 2 (1 + ~)2|x|2   - 2 (1 - E)2 |x|2 for all |x| I  be. Let

us define ~y_ = 1 - E, ~y+ = 1 + E. We have that for all T > 0

m~ ~~y_ ; x _ , ~+~  ]  mT ~~y+; ~ _ , ~+~ . Then we have that

mT~~-, x+~ - m~+ ~x_, x.+~ > mT~~y_; ~_, x+~ - mT+ ~’Y+~ ~-~ ~+~ ] where
~+ _ ~’(’Y+s 8~ ~~-~~ ~x+~) and

Since we take = == ~ E (U, and E  1+sin e we finally get
i _ ___ . __ r ___ r M _.. 1 ....,. r   1 ~ n )2014)

Vol. 15. n= ‘’ 1-1998.



122 P. CALDIROLI AND M. NOLASCO

In the next lemma we prove that the assumption on the geometry near the
origin of the solutions with index smaller than 1~ implies the PS condition
for cp in Ak at level ck

LEMMA 3.4. - If v1 E and v2 E satisfy
i v /  B

then there is v E such that cp( v)  + cp(v2 ).

Proof. - Let 8 E ~0, 2 ) be defined by

Let be > 0 be given by lemma 3.3 and let s, t E R be such that

for every s  s and t > t. Then, fixing ~~ (E (0, be) let so E (-oo, s~ and
to E ~t, be such that _ 8,  ~ for t > to, = b,
)~2(~)~ 1  b for s  so . Choosing any sequence we set

and for |t| ~ 1 we define as a linear function joining v1(Tn - 1 )
at t = -1 with v2 ( 1 - at t = 1. It is easy to check that

2014~ + as n -~ oo. Now let us set s.~ = so + 

tn = to - Tn, x- = and x+ = We see that _ ~_,

un(sn) = x+ and for n E N sufficiently large > 2T, being
T = ’T (8, $) given by lemma 3.3 (in fact -~ -~-oo). Moreover

]  b for t E Setting En = cp(v1 ) - 
we can choose un E H ~ ( ~-T , T ~ ; R2 ) such that ~cn (t) ~  r5 for any
t E ~-T , ~~, = .r~ and

Finally we put

Annales de l’Institut Henri Poincaré - Analyse non linéaire



123MULTIPLE HOMOCLINICS FOR SINGULAR SYSTEMS

’then, for n ~ iN large enough, vn ~ k1+k2 and

Since En ~ 0 and sn - tn ~ +00, using lemma 3.3, we inter that for some
n E N large enough  + ~

Remark 3.5. - Let us suppose that there is v E l1~ n K(c1 ) such that
v ( s ) ~ v(t) > 0 for s  - T and t > T. Then the argument used in
lemma 3.4 can be applied to construct u E H i t ~- Ti , Ti ~ , R2 ) such that
u(t) = v(t) for |t| I  T  Tl, = u(Ti), = 1 and

{ 1 I ~ I 2 - ~ u ) dt  = ci. The presence of this closed curve u is
precisely the additional assumption made in [R] to get c,~  kc1 for some
k > 1 sufficiently large and hence the existence of a second homoclinic
solution with winding number k. Actually in our case we get the result
for k = 2.

Finally we easily get the following compactness result.

LEMMA 3.6. - holds, then ck  + ... + c~l whenever I > 1

and k~ , ... , kl ~ Z ~ ~ o ~ verify k ~ -~- ... + k.

Proof - Firstly note that if there exists j E ~ 1, ... , L ~ such that 
we get immediately that c~.  c~~  c~l + ... + Therefore we can

assume that ]  k for any j E ~ l, ... , l ~ and in fact kj E ~ l, ... , k -1 ~,
since cm = c-m for any m E Z.

Then for every j = 1 ... , l we take vj E according to the assumption
Noting that l > 1, we can apply lemma 3.4 to the pair vi and v2

and we find v E such that  + cp(v2). Then we take
sequences (tn ) , ... , (tn ) C R such that t~ - t~ ~ 
Defining u~, = v ( ~ - t~ ) + v~ ( ~ - tn ), we get that for n ENlarge
enough un ~ k and Ck  lim cp(un) =  ck1 +...+ck1.

D

Then the multiplicity result plainly follows.

Proof of theorem 2.5. - We argue as in the proof of theorem 2.3. By
lemma 3.1 (ii) the set Ak  ck + 1 ~ is closed in 

Then, for the Ekeland principle, there is a PS sequence (Un) C Ak
at the level Ck. Consequently, for the lemma 3.2, we have un =

z,E.,~(.-tn)-I-...+-w~(’-tn)+~n E K, -~ 0 and

Vol. 15. n° 1-1998.
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= cp ( w2 ) + ... -~ cp ( wl ) . Calling J the set of indices j E ~ 1, ... , L ~
such that 0, then = k and, if l > 1, by
lemma 3.2 (ii) J contains at least two elements. In this case we can

apply lemma 3.6 and we get c~.  cp(w3)  ~~-1 = c~, a

contradiction. Hence l = 1 and the conclusion follows as in the proof of
theorem 2.3. D

Proof of theorem 2.4. - By theorem 2.3, there is v E 111 (~) n 
for some ( E S. Let be the unbounded component of R2 B range (v ) .
We claim that range (v’ ) C where v’ (t) = R v (t) and R is the rotation
matrix of an angle ~ given by (V6). Otherwise there are at least two

intervals I = and J = ( s 2 , t2 ) with -00  s i  ti such

that the closure of (v(t) : t E J~ U ~v’ (t) : t E I ~ defines a closed curve
in R2 B S~(v) and ~I( 2 ~v’~2 - V~(v’)) dt > f J( 2 ~v~2 - V (v) ) dt. We consider
the function w E A defined by 

’

we note that w is obtained substituting rL Lu v| = up
to reparametrizations of the time. By the definition of v’, |v|2 -
V(i;)) dt > V(v’)) dt and it holds that w e Ai(!;) and

 (~(~), a contradiction. Then, for 5,

/ B /. B

that is (hi) holds. An analogous argument works to prove (hk) for k > 1.
Then the conclusion follows by applying theorem 2.5. D

Proof of corollary 2.8. - Let v~ E Aj be a homoclinic orbit such that
= c~ (~). By remark 2.7, the condition (2.6) reduces to > 0

where x~ == Proving that ~~ e we get the

thesis. Arguing by contradiction, let us suppose that span+ x~ ~ .
Then there is T e R such that span+{x1, x2} for any t  T. If

(V6)’ holds, since V (x) = for x E R2 by the
conservation of the angular momentum and of the energy we infer that
= for any t G R, contrary to the fact that vj C A.

If (V6)" holds, then, setting = we get that Vj E 

= c~ ( ~ ) and ranger C Hence we get the thesis. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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