On the arithmetic sum of regular Cantor sets
Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 4, pp. 439-456.
@article{AIHPC_1997__14_4_439_0,
     author = {Palis, J. and Yoccoz, J. C.},
     title = {On the arithmetic sum of regular {Cantor} sets},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {439--456},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {4},
     year = {1997},
     mrnumber = {1464530},
     zbl = {0895.58020},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1997__14_4_439_0/}
}
TY  - JOUR
AU  - Palis, J.
AU  - Yoccoz, J. C.
TI  - On the arithmetic sum of regular Cantor sets
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1997
SP  - 439
EP  - 456
VL  - 14
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1997__14_4_439_0/
LA  - en
ID  - AIHPC_1997__14_4_439_0
ER  - 
%0 Journal Article
%A Palis, J.
%A Yoccoz, J. C.
%T On the arithmetic sum of regular Cantor sets
%J Annales de l'I.H.P. Analyse non linéaire
%D 1997
%P 439-456
%V 14
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1997__14_4_439_0/
%G en
%F AIHPC_1997__14_4_439_0
Palis, J.; Yoccoz, J. C. On the arithmetic sum of regular Cantor sets. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 4, pp. 439-456. http://www.numdam.org/item/AIHPC_1997__14_4_439_0/

[F] K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. | MR | Zbl

[PTI] J. Palis and F. Takens, Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms, Inventiones Math., Vol. 82, 1985, pp. 397-422. | MR | Zbl

[P] J. Palis, Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets, Contemporary Math., Vol. 58, 1987, pp. 203-215. | MR | Zbl

[PT2] J. Palis and F. Takens, Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations, Cambridge Univ. Press, 1993, 2nd edition 1994. | MR | Zbl

[PY] J. Palis and J-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math., Vol. 172, 1994, pp. 91-136. | MR | Zbl