@article{AIHPC_1997__14_1_1_0, author = {Andreucci, D. and Herrero, M. A. and Vel\'azquez, J. J. L.}, title = {Liouville theorems and blow up behaviour in semilinear reaction diffusion systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--53}, publisher = {Gauthier-Villars}, volume = {14}, number = {1}, year = {1997}, mrnumber = {1437188}, zbl = {0877.35019}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1997__14_1_1_0/} }
TY - JOUR AU - Andreucci, D. AU - Herrero, M. A. AU - Velázquez, J. J. L. TI - Liouville theorems and blow up behaviour in semilinear reaction diffusion systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1997 SP - 1 EP - 53 VL - 14 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1997__14_1_1_0/ LA - en ID - AIHPC_1997__14_1_1_0 ER -
%0 Journal Article %A Andreucci, D. %A Herrero, M. A. %A Velázquez, J. J. L. %T Liouville theorems and blow up behaviour in semilinear reaction diffusion systems %J Annales de l'I.H.P. Analyse non linéaire %D 1997 %P 1-53 %V 14 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1997__14_1_1_0/ %G en %F AIHPC_1997__14_1_1_0
Andreucci, D.; Herrero, M. A.; Velázquez, J. J. L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, pp. 1-53. http://www.numdam.org/item/AIHPC_1997__14_1_1_0/
[1] Unstable blow up patterns, to appear in Diff. and Integr. Equations. | MR | Zbl
,[2] New results on the Cauchy problem for parabolic systems and with strongly nonlinear sources, Manuscripta Math., Vol. 77, 1992, pp. 127-159 | MR | Zbl
,[3] Degenerate parabolic equations with initial data measures, to Trans. Amer. Mat. Soc. | MR | Zbl
,[4] On the Cauchy problem and initial traces for a of evolution equations with strongly nonlinear sources, Ann. Sc. Normale Pisa, V 1991. | Numdam | Zbl
and ,[5] Finite-time blow up for a particular parabolic system, J. Math. Anal., Vol. 21, no. 6, 1990, pp. 1415-1425. | MR | Zbl
and ,[6] Finite-time blow up for semilinear reactive-diffusive systems, to appear in J. Diff. Eq.
and ,[7] On the asymptotic shape of blow up, Indiana Univ. Math. J., Vol. 39, no. 4 1990, pp. 947-960 | MR | Zbl
,[8] Stable blow up patterns, J. Diff. Equations, Vol. 98, 1992, pp. 57-75. | MR | Zbl
,[9] Universality in blow up for nonlinear heat equations, preprint, 1993. | MR
and ,[10] Blow up estimates of positive solutions of a parabolic system to appear in J. Diff. Eq. | MR | Zbl
and ,[11] Degenerate parabolic equations, Springer-Verlag, New York, 1993. | MR | Zbl
,[12] Boundedness and blow up for a semilinear reaction diffusion system, J. Diff. Eq., Vol. 89, no. 1, 1991, pp. 176-202. | MR | Zbl
and ,[13] A semilinear parabolic system in a bounded domain Annali Mat. Pura Appl. (IV), CLXV, 1993, pp. 315-336. | MR | Zbl
and ,[14] Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, to appear in Trans. Amer. Math. Soc. | MR
and ,[15] Refined asymptotics for the blow up of ut - Δu = up, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 821-869. | MR | Zbl
and ,[16] Modulation theory for the blow up of vector valued nonlinear heat equations, to appear in J. Diff. Eq. | Zbl
and ,[17] Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Diff. Urav., Vol. 22, no. 7, 1986, pp. 1165-1173. | MR | Zbl
and ,[18] Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 525-598. | MR | Zbl
and ,[19] Asymptotically self-similar blow up of semilinear heat equations Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. | MR | Zbl
and ,[20] Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. | MR | Zbl
, ,[21] Blow up behaviour of one dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, Vol. 10, no. 2, 1993, pp. 131-189. | Numdam | MR | Zbl
and ,[22] Flat blow up in one dimensional semilinear heat equations, Diff. and Integral Eq., Vol. 5, 1992, pp. 973-998. | MR | Zbl
and ,[23] Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Série A, Vol. 319, 1994, pp. 141-145. | MR | Zbl
and ,[24] Linear and quasilinear equations of parabolic type, AMS Translations of Math., Monographs, XXIII, Providence RI, 1968.
, and ,[25] Global solutions of reaction-diffusion systems, in Lecture Notes in Mathematics, 1072, Springer-Verlag, New York, 1984. | MR | Zbl
,[26] Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, no. 1, 1993, pp. 441-464. | MR | Zbl
,[27] Higher dimensional blow up for semilinear parabolic equations, Comm. in PDE, Vol. 17, no. 9&10, 1992, pp. 1567-1596. | Zbl
,[28] Blow up of semilinear parabolic equations, in Recent advances in partial differential equations, eds. M. A. Herrero and E. Zuazua, Research in Applied Mathematics, Masson & J. Wiley, 1994, pp. 131-145. | Zbl
,[29] Curvature blow up in perturbations of minimizing cones evolving by mean curvature flow, Ann. Scuola Normale Sup. Pisa, Serie IV, Vol. XXI, 1994, pp. 595-628. | Numdam | MR | Zbl
,[30] An L∞ blow up estimate for a nolinear heat equation, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 291-295. | MR | Zbl
,