Nontrivial periodic solutions for strong resonance hamiltonian systems
Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, pp. 103-117.
@article{AIHPC_1997__14_1_103_0,
     author = {Chang, K. C. and Liu, J. Q. and Liu, M. J.},
     title = {Nontrivial periodic solutions for strong resonance hamiltonian systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {103--117},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {1},
     year = {1997},
     mrnumber = {1437190},
     zbl = {0881.34061},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1997__14_1_103_0/}
}
TY  - JOUR
AU  - Chang, K. C.
AU  - Liu, J. Q.
AU  - Liu, M. J.
TI  - Nontrivial periodic solutions for strong resonance hamiltonian systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1997
SP  - 103
EP  - 117
VL  - 14
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1997__14_1_103_0/
LA  - en
ID  - AIHPC_1997__14_1_103_0
ER  - 
%0 Journal Article
%A Chang, K. C.
%A Liu, J. Q.
%A Liu, M. J.
%T Nontrivial periodic solutions for strong resonance hamiltonian systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 1997
%P 103-117
%V 14
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1997__14_1_103_0/
%G en
%F AIHPC_1997__14_1_103_0
Chang, K. C.; Liu, J. Q.; Liu, M. J. Nontrivial periodic solutions for strong resonance hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, pp. 103-117. http://www.numdam.org/item/AIHPC_1997__14_1_103_0/

[AZ1] H. Amann and E. Zehnder, Nontrivial Solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Super. Pisa, CC. Sci., IV, Ser. 7, 1980, pp. 539-603. | Numdam | MR | Zbl

[AZ2] H. Amann and E. Zehnder, Periodic solutions of asymptotically Hamiltonian systems, Manuscr. Math., Vol. 32, 1980, pp. 149-189. | MR | Zbl

[Ch1] K.C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 693-712. | MR | Zbl

[Ch2] K.C. Chang, Applications of homology theory to some problems in differential equations, Nonlinear Func. Anal., (F.E. BROWDER Ed.), Proc. Symp. Pure Math., AMS, 1986, pp. 253-261. | MR | Zbl

[Ch3] K.C. Chang, On the homology method in the critical point theory, PDE and related subjects, (M. MIRANDA Ed.) Pitman, Vol. 269, 1992, pp. 59-77. | MR | Zbl

[CL] K.C. Chang and J.Q. Liu, A strong resonance problem, Chinese Ann. of Math., Vol. 11B, 1990, pp. 191-210. | MR | Zbl

[CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 207-253. | MR | Zbl

[DL] Y.H. Ding and J.Q. Liu, Periodic solutions of asymptotically linear Hamiltonian systems, J. Sys. Sci. Math. Sci., Vol. 9, 1990, pp. 30-39. | MR | Zbl

[LL] S.J. Li and J.Q. Liu, Morse theory and asymptotically linear Hamiltonian systems, JDE 78, 1989, pp. 53-73. | MR | Zbl

[Li] M.J. Liu, Morse theory for strong indefinite functional and applications, Thesis, Institute of System Science, Beijing, 1990.

[Lo] Y.M. Long, Maslov index, degenerate critical points and asymptotically linear Hamiltonian systems, Science in China, Ser. A, Vol. 33, 1990, pp. 1409-1419. | MR | Zbl

[LZ] Y.M. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes, Physics and Geometry, World Sci. Press, 1990, pp. 528-563. | MR

[MP] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mate. Italia, Suppl. Fasc. 3, 1975, pp. 1-32. | MR | Zbl

[Sa] A. Salvatore, Periodic solutions of asymptotically linear systems without symmetry, Rend. Sem. Mat. Univ., Padova, Vol. 74, 1985, pp. 147-161. | Numdam | MR | Zbl

[Sz] A. Szulkin, Cohomology and Morse theory for strong indefinite functionals, MZ 209, 1992, pp. 375-418. | MR | Zbl