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ABSTRACT. - We prove that viscosity solutions of the degenerate
prescribed curvature equation F ~u~ = F ( ~ 1, ... , ~n ) - 0 in 0, u = g
on ~03A9 are unique for a broad class of differential operators F.

1. INTRODUCTION

We consider in this paper the fully nonlinear partial differential equation

where S2 is a bounded domain in (~n, and F is a continuous function of the
xi ’ s, the principal curvatures of the graph of u. Since there is no intrinsic
ordering of these curvatures, we restrict our attention to symmetric F. It is
therefore natural to consider examples of functions F such as the k’ th-order
elementary symmetric functions (for 1  I~  n) ~

where the summation is over all strictly increasing C

(1, 2, ..,77.}. This family of functions includes the mean, scalar and Gauss
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620 T. R. CRANNY

curvatures by taking k = 1, 2 and n respectively. By defining Ho to be 1,
and considering quotients of the form

we include more general equations such as the harmonic curvature equation
(corresponding to k = n, l = n -1). Such equations and the related Hessian
equations have been used by Trudinger [6] to derive new isoperimetric
inequalities. For the classical theory of such equations, see [2], [4] and
references therein.

In the paper [5], Trudinger considered the problem

with the functions ~ and g of insufficient smoothness to obtain classical
solutions. It was therefore natural to consider the notion of viscosity solution
introduced by Crandall and Lions [1]. This requires a little care, since

equations of the form (1.1) are not elliptic for all functions u, but require
the curvature vector ~ _ ( ~ 1, .. , ~n ) of the graph of u to lie in some suitable
subset of called the admissible set.

For the problems considered in [5], it is assumed that the admissible set
is K, where K is an open symmetric cone in IRn with vertex at the origin
and containing the positive cone. F is assumed to satisfy the following:

F is concave in K;

where are positive nondecreasing functions on R+ and the

conditions involving the partial derivatives Fi are taken to hold wherever
the Fi exist.
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621ON THE UNIQUENESS OF SOLUTIONS OF THE HOMOGENEOUS

To deal with merely continuous Dirichlet boundary data, interior gradient
estimates are needed. To obtain these, a strengthened version of (1.10)
is needed,

where v3 is another positive nondecreasing function on I~+.
To ensure the existence of barriers (also guaranteeing that the Dirichlet

boundary condition holds in the strong sense), certain constraints are

imposed on aSZ. Letting x’ = (~i, ~2, ..., ~n-1 ) denote the principal
curvatures of ~03A9 we require (03BA’, 0) E K, and

uniformly for y E ~03A9, where 03BA _ (03BA1, .., 03BAn-1). Variations and refinements
of the above conditions are discussed in [5].
The following theorem was proven in [5]:

THEOREM 1.1. - Let F E CO(K) satisfy conditions (1.5) to (1.10), and
let SZ be a bounded domain in Rn with C2 boundary 8Q and 03C8 E 
nonnegative satisfying ( 1.12), ( 1.13), vo(inf v2(inf > 0. Then if there
exists any bounded viscosity subsolution of (1.4) in SZ, there exists for
any g E C 1 ~ 1 ( SZ ) a viscosity solution u E satisfying u = g on
~03A9. If in addition to the above structure conditions, (1.11) holds with

V3 (inf > 0, then for any g E C° (aSZ) there exists a viscosity solution
u E (SZ) n C° (SZ) satisfying u = g on 

Remark. - It should be noted that in [5] the conditions Vi (inf > 0

for i = 0, 2, 3 are satisfied for the differential operators of primary interest
even when inf 03C8 = 0 by considering F = and rather

than Hk and Hk,i.
The principal curvatures ~i are the eigenvalues of the curvature matrix

(second fundamental form) H, which can be written as

where v = P(p) = I - It is then possible to think of
the differential equation as F[u] = where F is a
function of the eigenvalues of the matrix-valued argument. The notion of

’ Vol. 13, n° 5-1996.



622 T. R. CRANNY

admissible H is a trivial adaptation of that of admissible curvature vectors
x E We will at different times denote the differential operator by 
F[u], F(Du, D2u), or 
The standard notion of a viscosity subsolution does not need modification

to deal with prescribed curvature equations, but that of a supersolution needs
to be altered since a function ~(’) which touches u from below at xo may
satisfy F[cp](xo) > the curvatures of § at xo lie outside the

admissible set. The simplest example of this is = A - Blxl2 for

B » 0 and F = Hk for k even.

Following [5], we will say a function u E CO(O) is a viscosity subsolution
of if for any Xo E C2(S2) satisfying
cp > u in H, = u(xo), one has >_ 0.

However, we say u E is a viscosity supersolution if for any

Xo E S2, ~ E C2(0) satisfying §  u in H, cp(xo) = one has

for ~ E Sn,

therefore avoiding the above-mentioned complications. It is also possible to
define a supersolution by restricting one’s attention to admissible smooth ~).
The question of the uniqueness of solutions of (1.1) has remained an

open question even for the case 03C8 > > 0 in 03A9 for some constant uJo.
The standard techniques used in the theory of viscosity solutions are not
applicable, since such curvature equations lack both the strict ellipticity and
the strict monotonicity in the z variable normally used to obtain uniqueness
results. We show here that the above solution is unique in the highly
degenerate case - 0. Subsequent work will consider the more general
case of varying 
The result proven here is:

THEOREM 1.2. - For 03A9 a bounded domain in let u E C° (SZ) be a
viscosity solution of the partial differential equation

where F E x Sn). If F and g are such that the above boundary
condition always holds in the strong sense, and
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623ON THE UNIQUENESS OF SOLUTIONS OF THE HOMOGENEOUS

holds for all admissible and c > 0, then the viscosity solution u is unique
in 

The proof begins in a typical fashion by assuming that the solution u is
not unique, and considering the difference u - v where v is another solution.
A geometric argument allows us to find a point in the interior of f2 where
we have very good information about the difference in second derivatives,
at the cost of some potentially awkward differences in the gradient terms.
This point is typically not a point where sup (u - v) is attained, and its

precise location is not determined by the arguments used.
In the following section we give a technical result which will allow us to

exert some control over the location of this point, sufficient to show in the
section that follows it that the useful information regarding the Hessians out-
weighs any possible problems introduced by gradient differences. We then
obtain uniqueness results from a standard differential inequality argument.

2. LOCALIZATION

We show in this section that if u and v are ’reasonably nice’ functions
then the set upon which sup ( u - v) is attained can be made arbitrarily
small in diameter by making an arbitrarily small rigid-body perturbation of
the graph of u. The result is intuitively reasonable, and it is likely that the
proof below could be replaced with a more direct proof.

THEOREM 2.1. - If the functions u and v satisfy
1. u and -v are Lipschitz and semiconvex,

then for any 6 > 0 one may perform an arbitrarily small ’rigid-body ’ pertur-
bation of the graph of u to produce a new Lipschitz and semiconvex function
ic such that C = {x E n ] (ic - v) (x) = sup(û - v) ~ C C B(xo, 8) C C H

Q

for some point xo E S2.

Remark. - 1. The assumptions above on u and v will hold automatically
in our applications since we will apply this result only to regularisations of
our solutions. 2. By a ’rigid-body perturbation’ of a function or its graph
we mean changes corresponding to translations and rotations of the graph
in The magnitude of the perturbation can be measured in terms of
greatest distance moved by any point on the graph. 3. One effect of any
such perturbation is to slightly change the domain, but since our arguments

Vol. 13, n° 5-1996.



624 T. R. CRANNY

are all concerned with points which are bounded away from an and we
only use arbitrarily small perturbations, we will ignore this effect.
The above result is a consequence of the following Theorem.

THEOREM 2.2. - Let u, v and C be as in Theorem 2.1. For any x E C

one may make an arbitrarily small rigid-body perturbation ic of u so as
to ensure that

where

for Co, Ci E (0, oo) constants depending only upon the Lipschitz and
semiconvexity bounds on u and -v.

Proof. - For the sake of simplicity let us temporarily shift u vertically
to consider the case where sup03A9 (u - v) = 0. The idea behind the proof is
to leave v as it is, but to lower the graph of u by T « 1, taking the two
graphs out of contact. We then tilt the graph of u - T in an appropriate
direction until contact is re-established. We are able show that contact must

be established for a certain small tilt angle, and that information tells us
that the contact point cannot be too close to x, since the small tilt cannot
compensate for the drop in height until one is sufficiently far away from
the ’axis’ of rotation. (When talking of rotations we will use some of the
language of R~, although all work is done in ~n for n arbitrary.)
The only problem in using a rotation of the graph of u - T to force

renewal of the contact between the two graphs is that while one can easily
make a point ( x, u ( x ) - T ) trace out a portion of a vertical circle (and
thereby rise as desired), it is conceivable that near the point in question
the graph of v(.) has the same partially spherical shape, meaning that
the improvement due to the tilting of gr (u - T) brings (x, ~z(~) 2014 T) no
closer to gr v. This problem can be ruled out by using semiconcavity and
almost-everywhere differentiability and restricting one’s attention to points
which are sufficiently close together (this last point is responsible for the
Ci term in (2.2)).

Let us begin by choosing T very small and fixed. Let C be a constant
such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



625ON THE UNIQUENESS OF SOLUTIONS OF THE HOMOGENEOUS

Since u and v are only twice-differentiable almost-everywhere, we use
the now-standard arguments of Jensen to find a point xo extremely close
to C such that

1. u and v are twice differentiable at xo,

By (2.3) we have

Since u :S v and u is Lipschitz, it follows that

for some constant Cn+l  oo, where dist~A, B~ _
E A, y E B} for A, B C IRn+l.

We consider a point on gr (u - T) sufficiently close to (xo, u(xo) - T)
and call it the origin in (thereby ensuring that Ixo I is sufficiently
small). We choose our coordinate system for IRn so that xo lies along the
xn -axis, and tilt the graph of u - T by angle a about the origin ’in the xn
direction’ by applying the linear operator A~ where the (n + 1) x (n + 1)
matrix of A~ is given by

so under the action of Aa upon g r ( u - T ) , x 1, .... , xn _ 1 are unchanged,
but x~, ~ cos a sina (u(x) - T) and (u(x) - T) -~ sina xn +
cos 03C3 (u(x) - T).

Vol. 13, n° 5-1996.
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The distance a point (x, u(x) - T) is moved by A~ is bounded (for
a « 1) by 203C3Cu |x| where Cu is the Lipschitz bound on u, so contact
between the graphs cannot be re-established if

We now show that a tilting by angle o-  C T (for some C  oo )
ensures contact between the two graphs, by showing that a tilting by angle
CT means that the point (xo, u(xo) - T) is rotated to a point lying
above the graph of v. Accordingly there must be some smaller angle for
which contact first occurs (we do not know where or for what tilt angle
this contact occurs).
We now concentrate on the two-dimensional vertical plane spanned by

xn and This allows us to treat this aspect of the proceedings as a
1-dimensional problem.
Using (2.4) one can show by simple calculations that if is less than

some constant Cl, then the path swept out by (xo, u(xo) - T) upon tilting
is almost perpendicular to the slope of gr v at xo . This means that as one
tilts about the origin, (xo, u( xo) - T) does not ’follow’ the graph of v at all,
but instead lifts upwards (for the correct sign of a !) towards gr v. One can
then easily show that for a tilt angle of a given by = CT, (for some
constant C depending only on the Lipschitz and semiconcavity bounds for
u and v), the point (xo, u(xo) - T) is swept above the graph of v. Clearly,
for some smaller ~, contact between the two graphs is made for the first
time, so for this a we have T/a > Harking back to (2.7), we see
that contact has taken place, but that the contact cannot be for x such that

Since we have the restriction that the origin and xo be within distance Ci
of each other, and we wish to consider the case 0 E C and also Xo very
close to C, the right-hand side of the above expression can be written as
Ko = Co By relabeling our origin, we have the desired
result. 0

The ball C R" has therefore been ’bitten out’ from the set upon
which the new supremum is achieved. The important feature of the above
result is that the size of the ball removed from contention depends only on
the relative sizes of T and ~, so one may trivially make the perturbation
used as small as desired without changing the result in any way.

Remark. - It should be noted that we are not claiming that the new
supremum set C is The less important reason is that the
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perturbation may bring points (barely) outside C into contention (one
can easily control this tendency by decreasing the magnitude of the

perturbation), while more significantly, what would typically happen is

that the perturbation would produce a much smaller C, with the explicit
removal of the ball above dramatically understating the ’pruning’ done.
For example, if u and v are affine a single perturbation can result in
C = ~x~ for some x E n. This example illustrates the principle that if
one has any additional information the results used here can be replaced
with a satisfyingly concrete construction, but unfortunately none are readily
apparent in the more general case.

Proof of Theorem 2.1. - The result now follows easily from the repeated
application of Theorem 2.2, due to the compactness of C and all subsequent
versions thereof. The only aspect deserving of caution is the fact that

each perturbation may allow points outside the previous supremum set
to be brought into play. This can be easily avoided by using a simple
compactness argument to add at each iteration the restriction that the

perturbation be sufficiently small to ensure that far more is removed from
contention than is introduced. For any given 8 > 0 only a finite number of
iterations is required to cut the supremum set down until it has diameter

less than 8. If one wishes the total perturbation to be at most of size To, then
Theorem 2.2 is used with successive perturbations of at most size To 
for i = 1, 2,... D

3. PROOF OF UNIQUENESS

Proof of Theorem 1.2. - If u is not unique, then there exists a second
distinct viscosity solution v E Since the boundary condition

holds in the strong sense, u(.) = v(.) = g(.) on ~03A9 and without

loss of generality we assume Mo = sup(u - v) > 0 and C cc H for
_ Q

C I (u - v) (~J) = Mo ~ ~
To avoid the problems caused by the lack of smoothness of u and v, we

take the standard route of considering the sup- and inf-convolutions v;,
first used in this context in [3] and defined by

Vol. 13, n° 5-1996.
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for E > 0. As shown in [3], uE and v-~ are also viscosity subsolution
and supersolution respectively of (1.1) with the domain now slightly
restricted (we use here the fact that the homogeneous curvature equation
is independent of x).
The two functions are twice differentiable almost everywhere, with

holding in the sense of distributions. It is clear that for E sufficiently small,
vE will attain its supremum inside some set strictly contained in H.

We fix E to be such a small constant. We now use the results of the previous
section to perform a (small) rigid body perturbation of uE so as to make
the set upon which the supremum of is attained have diameter

less than 8 where 8 is some constant sufficiently small with respect to E.

This rigid-body perturbation does not change the principal curvatures of the
graph, but does introduce some small change in where these curvatures are
recorded. Since in this instance we are interested in the case where there

is no spatial dependence, this makes no difference. This means that uE is
a subsolution of the original equation, and is a supersolution. For ease
of notation we will refer to these functions as ic and v.

We now take the origin in ~n to be the centre of the small ball containing
the supremum set of K - v. Consider the sphere S in with centre

(0, -A) and radius R, with A(R) chosen so that S lies above the graph
and touches it at some point x. By standard negligible tilting

we may assume that the functions ic and v are twice differentiable at x.

We will derive a contradiction by evaluating the differential inequalities
for ic and v at x.

It is clear that:

The inequality for second derivatives gives us a very valuable tool in

attempting to derive a differential inequality, but the difference in gradient
terms is a complicating factor and one which can, to some extent, cancel
out the benefits from the second derivative information. The reason for the

localisation arguments in the previous section is that since the supremum
of I - v is taken only in B(0,8), it is clear that for R sufficiently large,
Ixl  28. This has precisely the effect of ensuring that the ’bad’ gradient
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629ON THE UNIQUENESS OF SOLUTIONS OF THE HOMOGENEOUS

difference is much smaller than the ’good’ Hessian difference term, since the

gradient difference is for R » 1, while the Hessian difference

is By choosing 8 sufficiently small and then R sufficiently large,
we may make this imbalance as great as we wish.

We are now in a position to prove a differential inequality which
contradicts (1.15) and proves the nonexistence of a second solution. One

may proceed by using the information contained in (3.3) directly in (1.14)
(a messy procedure!), but we shall illustrate further the utility of the rigid-
body perturbation invariance of solutions by concluding the proof using
that property.
One can tilt the graph of I about (~, u(~) ) so as to remove completely

the difference between the gradients of I and v at x. Straightforward but
tedious calculation shows that the magnitude of the change in 
caused by this tilting is bounded by some constant times the magnitude
of the change in the gradient (i.e. with the constant factor

controlling the change in the Hessian depending only upon E (through the
bounds on and D2u(x)). Since (3.3) holds, and we may make ~~~
as small as we like by taking 8 sufficently small and R sufficiently large,
after tilting we have a new function u* which is a subsolution of our

original equation and satisfies

We then have at x,

x(Dzc*,D2u*) + cI, (3.5)
where c > 0 is some constant depending only on E and R (this follows

directly from the definition of ?-C). It follows that at x,

So we have

with the same true if we replace D2v with for r~ > 0 in Sn,
since D 2 v > so there exists § E C2(n) touching v from below at
some point y such that

in contradiction of (1.15).

Vol. 13, n° 5-1996.
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4. CONCLUDING REMARKS

The techniques used here have relied on several occasions upon the fact
we are dealing with the homogeneous prescribed curvature problem rather
than the more general F ( r~ 1, ~ 2 , ... , ~n ) _ ~ ( x ) > 0. The use of the above
techniques in this more general context is the focus of work in progress. As
is typical in viscosity theory, the spatial dependence in the inhomogeneous
case introduces complications due to the effect of the regularisation process.
It is interesting to note that the rigid-body perturbation process is similarly
affected, but the spatial shifting there is somewhat amenable to control. It
is possible that the perturbation process can be actively used to mitigate
the effect of the regularisation process.
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