@article{AIHPC_1996__13_1_17_0, author = {Horozov, Emil Ivanov and Iliev, Iliya Dimov}, title = {Perturbations of quadratic hamiltonian systems with symmetry}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {17--56}, publisher = {Gauthier-Villars}, volume = {13}, number = {1}, year = {1996}, mrnumber = {1373471}, zbl = {0854.34035}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1996__13_1_17_0/} }
TY - JOUR AU - Horozov, Emil Ivanov AU - Iliev, Iliya Dimov TI - Perturbations of quadratic hamiltonian systems with symmetry JO - Annales de l'I.H.P. Analyse non linéaire PY - 1996 SP - 17 EP - 56 VL - 13 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1996__13_1_17_0/ LA - en ID - AIHPC_1996__13_1_17_0 ER -
%0 Journal Article %A Horozov, Emil Ivanov %A Iliev, Iliya Dimov %T Perturbations of quadratic hamiltonian systems with symmetry %J Annales de l'I.H.P. Analyse non linéaire %D 1996 %P 17-56 %V 13 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1996__13_1_17_0/ %G en %F AIHPC_1996__13_1_17_0
Horozov, Emil Ivanov; Iliev, Iliya Dimov. Perturbations of quadratic hamiltonian systems with symmetry. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 1, pp. 17-56. http://www.numdam.org/item/AIHPC_1996__13_1_17_0/
[1] Le groupe de monodromie du déploiement des singularités isolées de courbes planes I, II. I: Math. Annalen, Vol. 213, 1975, No. 1, pp. 1-32; II: In Proc. Int. Congr. Math., (Vancouver, 1974), Vol. 1, 1975, pp. 395-404. | EuDML | MR | Zbl
,[2] Geometrical methods in the theory of ordinary differential equations, Springer Verlag, Berlin, Heidelberg, New York, 1988. | MR | Zbl
,[3] Singularities of differentiable maps II, Birkhäuser Verlag, Basel, 1988. | MR
, and ,[4] A class of planar quadratic vector fields with a limit cycle surrounded by a saddle loop, Proceedings of the AMS, Vol. 288, 1983, pp. 719-724. | MR | Zbl
,[5] On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., Vol. 100, 1954, pp. 1-19. | MR | Zbl
,[6] Bifurcation of the limit cycle of a family of planar vector fields, Selecta Math. Soviet., Vol. 1, 1981, pp. 373-387, Russian original Trudy Sem. I. G. Petrovskogo, 1976. | MR | Zbl
,[7] A survey of quadratic systems, J. Differential Equations, Vol. 2, 1966, pp. 293-304. | MR | Zbl
,[8] The period function of a Hamiltonian quadratic system, Diff. Int. Equations, Vol. 6, 1993, No. 6, pp. 1357-1365. | MR | Zbl
and ,[9] Abelian integrals for quadratic vector fields, J. reine angew. Math., Vol. 382, 1987, pp. 165-180. | EuDML | MR | Zbl
, and ,[10] The International Dictionary of Applied Mathematics, D. van Nostrand Company Inc., Princeton, New Jersey, 1960. | MR | Zbl
(Editor),[11] Limit cycles and zeroes of Abelian integrals satisfying third order Picard-Fuchs equations, In "Bifurcations of Planar Vector Fields", Lect. Notes in Math., 1455, J.-P. Françoise, R. Roussarie, eds., pp 160-186. | MR | Zbl
and ,[12] Limit cycles of perturbations of quadratic Hamiltonian vector fields, J. Math. Pures Appl., Vol. 72, 1993, pp. 213-238. | MR | Zbl
and ,[13] Intersection matrices for certain singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 10-13. | MR | Zbl
,[14] Dynkin diagrams for singularities of functions of two variables, Funct. Anal. Appl., Vol. 8, 1974, pp. 295-300. | MR | Zbl
,[15] On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems, J. Differential Equations, Vol. 113, 1994, No. 1, pp. 84-105. | MR | Zbl
and ,[16] On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc., Vol. 69, 1994, No. 1, pp. 198-224. | MR | Zbl
and ,[17] Hilbert-Arnold problem for cubic Hamiltonians and limit cycles, In: Proc. Fourth Intern. Coll. Diff. Eqs, VSP Intern. Sci. Publs, Utrecht, 1994, pp. 115-124. | MR | Zbl
and ,[18] Number of zeros of certain Abelian integrals in a real domain, Funct. Anal. Appl., Vol. 11, 1978, pp. 78-79. | Zbl
,[19] Double exponential estimate for the number of zeros of complete Abelian integrals, Preprint, June 1994.
, ,[20] Real analytic manifolds with finiteness properties and complex Abelian integrals, Funct. Anal. Appl., Vol. 18, 1984, pp. 119-128. | Zbl
,[21] Global bifurcations and chaotic behaviour in a disturbed quadratic system with two centers (in Chinese), Acta Math. Appl. Sinica, Vol. 11, 1988, No. 3, pp. 312-323. | Zbl
and ,[22] Nonoscillations of elliptic integrals, Funct. Anal. Appl., Vol. 24, 1990, No. 3, pp. 205-210. | MR | Zbl
,[23] Über Autoschwingungssysteme, die den Hamiltonischen nahe liegen, Zeitr. der Sowjetunion, Vol. 6, 1934, pp. 25-28. | Zbl
,[24] On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., Vol. 617, 1986, pp. 67-101. | MR | Zbl
,[25] Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl., Vol. 18, 1984, pp. 98-108. | MR | Zbl
,[26] Theory of limit cycles, Translation of Mathematical Monographs, Vol. 66, AMS, Providence, 1986. | MR | Zbl
et al.,[27] On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations, Res. Rept Peking Univ., No. 33, 1993.
and ,[28] Quadratic systems with center and their perturbations, J. Differential Equations, Vol. 109, 1994, No. 2, pp. 223-273. | MR | Zbl
,[29] Sturm's theorem for hyperelliptic integrals, Leningrad Math. J., Vol. 1, 1990. | MR | Zbl
,