@article{AIHPC_1995__12_4_415_0, author = {Haj{\l}asz, Piotr}, title = {A note on weak approximation of minors}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {415--424}, publisher = {Gauthier-Villars}, volume = {12}, number = {4}, year = {1995}, zbl = {0910.49025}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1995__12_4_415_0/} }
Hajłasz, Piotr. A note on weak approximation of minors. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) no. 4, pp. 415-424. http://www.numdam.org/item/AIHPC_1995__12_4_415_0/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1977, pp. 337-403. | MR | Zbl
,[2] The approximation problem for Sobolev maps between two manifolds, Acta Math., Vol. 167, 1991, pp. 153-206. | MR | Zbl
,[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Vol. 80, 1988, pp. 60-75. | MR | Zbl
and ,[4] Geometric properties of Sobolev mappings, in: Pitman Res. Notes in Math., Vol. 211, 1989, pp. 225-241. | MR | Zbl
,[5] Direct Methods in the Calculus of Variations, Springer-Verlag 1989. | MR | Zbl
,[6] A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys., Vol. 105, 1986, pp. 571-591. | MR | Zbl
,[7] A new setting for Skyrme's problem, in: Proc. Colloque problèmes variationnels (Paris, June 1988), Boston-Basel-Stuttgart 1990. | MR | Zbl
,[8] Sobolev maps with the integer degree and applications to Skyrme's problem, Proc. R. Soc. Lond., Vol. 436, 1992, pp. 197-201. | MR | Zbl
and ,[9] Geometric Measure Theory, Springer-Verlag 1969. | MR | Zbl
,[10] Cartesian currents and variational problems into spheres, Annali Sc. Norm. Sup. Pisa, Vol. 16, 1989, pp. 393-485. | Numdam | MR | Zbl
, and ,[11] A Sard type theorem for Borel mappings, Colloq. Math., Vol. 67, 1994, pp. 217-221. | MR | Zbl
,[12] Approximation of Sobolev mappings, Nonlinear Anal., Vol. 22, 1994, pp. 1579-1591. | MR | Zbl
,[13] Sobolev mappings, co-area formula and related topics (preprint). | MR
,[14] A note on approximation of Sobolev maps, (in preparation).
,[15] Approximation of Sobolev maps between an open set and Euclidean sphere, boundary data, and singularities, Math. Ann., Vol. 285, 1989, pp. 125-140. | MR | Zbl
,[16] Integral estimates for null lagrangians, Arch. Rat. Mech. Anal., Vol. 125, 1993, pp. 25-80. | MR | Zbl
and ,[17] Sur les ensembles analytiques, Fund. Math., Vol. 10, 1927, pp. 1-95. | JFM
,[18] Sur quelques propriétés des ensembles (A), Bull. de l'Acad. de Cracovie, 1918, p. 44. | JFM
and ,[19] Lp-approximation of Jacobians, Comm. Math. Univ. Carolinae, Vol. 32, 1991, pp. 659-666. | MR | Zbl
,[20] Sobolev Spaces, Springer-Verlag 1985. | MR
,[21] Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, Vol. 307, Série I, 1988, pp. 501-506. | MR | Zbl
,[22] Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math., Vol. 412, 1990, pp. 20-34. | MR | Zbl
,[23] Det=det. A remark on the distributional determinant, C. R. Acad. Sci. Paris, Vol. 313, 1990, pp. 13-17. | MR | Zbl
,[24] On a new class of elastic deformations not allowing for cavitation, Ann. I.H.P. Anal. Nonl., Vol. 11, 1994, pp. 217-243. | Numdam | MR | Zbl
, and ,[25] Sur une classe de fonctions considérées le problème de Dirichlet, Fund. Math., Vol. 21, 1933, pp. 129-150. | JFM | Zbl
,[26] On the stability of conformal mappings in multidimensional space, Siberian Math. J., Vol. 8, 1967, pp. 65-85. | Zbl
,[27] Real and Complex Analysis, Third edition, Mc Graw-Hill, New York 1987. | MR | Zbl
,[28] Approximation theorems for Sobolev mappings, (preprint).
and ,[29] Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 105-127. | MR | Zbl
,