Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case
Annales de l'I.H.P. Analyse non linéaire, Tome 11 (1994) no. 5, pp. 537-551.
@article{AIHPC_1994__11_5_537_0,
     author = {Pacard, Frank},
     title = {Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {537--551},
     publisher = {Gauthier-Villars},
     volume = {11},
     number = {5},
     year = {1994},
     mrnumber = {1302279},
     zbl = {0837.35026},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1994__11_5_537_0/}
}
TY  - JOUR
AU  - Pacard, Frank
TI  - Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1994
SP  - 537
EP  - 551
VL  - 11
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1994__11_5_537_0/
LA  - en
ID  - AIHPC_1994__11_5_537_0
ER  - 
%0 Journal Article
%A Pacard, Frank
%T Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case
%J Annales de l'I.H.P. Analyse non linéaire
%D 1994
%P 537-551
%V 11
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1994__11_5_537_0/
%G en
%F AIHPC_1994__11_5_537_0
Pacard, Frank. Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case. Annales de l'I.H.P. Analyse non linéaire, Tome 11 (1994) no. 5, pp. 537-551. http://www.numdam.org/item/AIHPC_1994__11_5_537_0/

[1] F. Bethuel, Partial Regularity for Stationary Harmonic Maps , to appear inManuscripta Math.

[2] S. Campanato, Proprieta di Inclusione per Spazi di Morrey, Ricerche Mat., Vol. 12, 1963, p. 67-86. | MR | Zbl

[3] S. Campanato, Equazioni Ellittiche del II Ordine e Spazi L(2,λ), Ann. Mat. Pura Appl., Vol. 4, 69, 1965, p. 321-381. | MR | Zbl

[4] L.C. Evans, Partial Regularity for Stationary Harmonic Maps into Spheres, Arch. Rational Mech. Anal., Vol. 116, 1991, p. 101-113. | MR | Zbl

[5] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Analysis, Annals of Mathematical Studies, Vol. 105, Princeton Univ. Press, 1989. | Zbl

[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Springer, Berlin-Heidelberg-New York, 1977. | MR | Zbl

[7] R. Hardt, D. Kinderlehrer, F.H. Lin, Existence and Partial Regularity of Static Liquid Cristal Configurations, Comm. Math. Phys., Vol. 105, 1986, p. 547-570. | MR | Zbl

[8] C.B.Jr. Morrey, Multiple Integrals in the Calculus of Variations, Berlin-Heidelberg-New York, Springer, 1966. | MR | Zbl

[9] F. Pacard, A Note on the Regularity of Weak Solutions of -Δu = uα in Rn, n ≥ 3, Houston Journal of Math., Vol. 18, 4, 1982, p. 621-632. | MR | Zbl

[10] F. Pacard, Partial Regularity for Weak Solutions of a Nonlinear Elliptic Equation , to appear inManuscripta Mathematica. | MR | Zbl

[11] S.I. Pohozaev, Eigenfunctions of the Equation Δu + λf(u) = 0, Soviet. Math. Doklady, Vol. 6, 1965, p. 1408-1411. | MR | Zbl

[12] R. Schoen, Analytic Aspects for the Harmonic Map Problem, Math. Sci. Res. Inst. Publi., Vol. 2, Springer, Berlin, 1984. | MR | Zbl