On the singular support of the distributional determinant
Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) no. 6, pp. 657-696.
@article{AIHPC_1993__10_6_657_0,
     author = {M\"uller, Stefan},
     title = {On the singular support of the distributional determinant},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {657--696},
     publisher = {Gauthier-Villars},
     volume = {10},
     number = {6},
     year = {1993},
     mrnumber = {1253606},
     zbl = {0792.46027},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1993__10_6_657_0/}
}
TY  - JOUR
AU  - Müller, Stefan
TI  - On the singular support of the distributional determinant
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1993
SP  - 657
EP  - 696
VL  - 10
IS  - 6
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1993__10_6_657_0/
LA  - en
ID  - AIHPC_1993__10_6_657_0
ER  - 
%0 Journal Article
%A Müller, Stefan
%T On the singular support of the distributional determinant
%J Annales de l'I.H.P. Analyse non linéaire
%D 1993
%P 657-696
%V 10
%N 6
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1993__10_6_657_0/
%G en
%F AIHPC_1993__10_6_657_0
Müller, Stefan. On the singular support of the distributional determinant. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) no. 6, pp. 657-696. http://www.numdam.org/item/AIHPC_1993__10_6_657_0/

[Ba 77] J.M. Ball. Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63. 1977, pp. 337-403. | Zbl

[CLMS 89] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmls, Compacité par compensation et espaces dc Hardy. C. R. Acad. Sci. Paris, T. 309, Series I, 1989, pp. 945-949. | Zbl

[Da 89] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, New York, 1989. | Zbl

[DM 90] B. Dacorogna and J. Moser, On a Partial Differential Equation Involving the Jacobian Determant, Ann. I.H.P., Analvse non linéaire, Vol. 7, 1990, pp. 1-26. | EuDML | Numdam | Zbl

[DA 89] R. De Arcanġelis, Some Remarks on the Identity Between a Variational Functional and its Relaxed Functional, Ann. Univ. Ferrera, Sez. VII, Sc. Math., Vol. 35, 1989, pp. 135-145. | Zbl

[Fa 85] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985. | Zbl

[Gi 84] E. Gusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984. | Zbl

[MM 92] J. Maly and O. Martio, Lusin's Condition (N) and Mappings of the Class W1,n, Preprint. | Zbl

[Mo 66] C.B. Morrly, Multiple Integrals in the Calculus of Variations, Springer, Berlin, New York, 1966. | Zbl

[Mu 90a] S. Müller, Det = det. A Remark on the Distributional Determinant, C. R. Acad. Sci. Paris, T. 311, Series I, 1990, pp. 13-17. | Zbl

[Mu 90b] S. Müller, A Counterexample to Formal Integration by Parts, C. R. Acad. Sci. Paris, T. 312, Series I, 1990, pp. 45-49. | Zbl

[MTY 92] S. Müller, Q. Tang and B.S. Yan, On a New Class of Elastic Deformations not Allowing for Cavitation. Ann. I.H.P., Analvse non linéaire, to appear. | Numdam | Zbl

[Po 87] S.P. Ponomarev, Property N of Homeomorphisms of the Class W1.p, Sib. Math. J., Vol. 28, (1), 1987, pp. 291-298. | Zbl

[Ro 70] C.A. Rogers, Hausdorff Measure, Cambridge University Press, Cambridge 1970. | Zbl