Annales de l'I. H. P., SECTION C

VLADIMIR ŠVERÁK
 On Tartar's conjecture

Annales de l'I. H. P., section C, tome 10, no 4 (1993), p. 405-412
http://www.numdam.org/item?id=AIHPC_1993__10_4_405_0
© Gauthier-Villars, 1993, tous droits réservés.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On Tartar's conjecture

by
Vladimír ŠVERÃK
Department of Mathematics, Heriot-Watt University, Edinburgh EH144AS, UK. (On leave from MFF UK, Sokolovská 83, Praha)

Abstract. - We prove that the only probability measures supported at connected subsets of 2×2 matrices without rank-one connections and commuting with the determinant are Dirac masses. We also prove some regularity results for fully nonlinear 2×2 elliptic systems of the first order.

Key words : Young measures, compactness, regularity.
Résume. - Soit K un sous-ensemble connexe de matrices deux par deux sans connexion de rang un et soit v une mesure de probabilité concentrée sur K qui commute avec le déterminant. On démontre que v est une masse de Dirac. On démontre aussi quelques résultats de régularité pour des systèmes elliptiques deux par deux du premier ordre.

1. INTRODUCTION

Let $\boldsymbol{\Omega} \subset \mathbf{R}^{2}$ be open an bounded. For functions $v: \Omega \rightarrow \mathbf{R}^{2}$ we consider nonlinear systems given by $\mathrm{D} v(x) \in \mathrm{K}$, where K is a submanifold of the
set $M^{2 \times 2}$ of all 2×2 matrices. We shall be interested in regularity of solutions of these systems and also in the following question: if $v_{j}: \Omega \rightarrow \mathbf{R}^{\mathbf{2}}$ is a sequence of functions such that $\left|\mathrm{D} v_{j}\right| \leqq c$ and $\operatorname{dist}\left(\mathrm{D} v_{j}(), \mathrm{K}.\right) \rightarrow 0$ in L^{p}, what can be said about compactness of the sequence $\mathrm{D} v_{j}$ in L^{p} ? Since for every $A, B \in M^{2 \times 2}$ with rank $(A-B)=1$ we can construct a sequence of piecewise linear functions whose gradients oscillate between A and B , a necessary condition to get some positive results is that $\operatorname{rank}(A-B) \geqq 2$ for any two distinct matrices $A, B \in K$. Tartar's conjecture (see [14]) in our special situation says that this condition should be also sufficient for the compactness of the sequences above. Here we prove that this holds true under the additional assumption that K is connected. (Without additional assumptions the conjecture fails. For a counterexample with K consisting of four matrices see [7]. Counterexamples in higher dimensions can be found in [2].) We also give a simple proof of the fact that if K is connected, rank $(A-B) \geqq 2$ for each $A, B \in K$ distinct, and the system $\mathrm{D} v(x) \in K$ is elliptic (i.e. planes tangent to K do not contain rank-one directions), then the solutions which are Lipschitzian belong to $\mathrm{C}^{1, \alpha}$ for some $\alpha>0$. If, moreover, K is smooth, then the solutions are smooth. A priori estimates for the $\mathrm{C}^{1, \alpha}$-norm of twice differentiable solutions of the systems considered here are well-known. (See, for example, [8], Chapter 12.) I am not aware of any previous regularity results for Lipschitzian solutions, with the exception of the Monge-Ampère equation, which, of course, can be considered as a first-order elliptic system. In general, if K is two dimensional and is contained in symmetric matrices, then the equation $\mathrm{D} v(x) \in \mathrm{K}$ can be viewed as a fully nonlinear scalar equation of the second order for the potential of the vector field v. A priori estimates for solutions of such equations in arbitrary dimensions have been obtained in [5]. See also [8], Chapter 17.

2. PRELIMINARIES

Throughout this paper Ω denotes a nonempty, bounded, open subset of \mathbf{R}^{2}. The Lebesgue spaces L^{p}, the Sobolev spaces $\mathrm{W}^{k, p}$ and the spaces $C^{k, \alpha}$ of Hölder continuous functions are defined in the usual way.

Let us briefly recall basic facts concerning Young measures. (We refer the reader to [1] or [14] for more details.) Let $z_{j}: \Omega \rightarrow \mathbf{R}^{n}$ be a sequence of functions bounded in $\mathrm{L}^{\infty}(\Omega)$. It is possible to prove that there exists a subsequence z_{μ} of z_{j} such that for any continuous function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ the sequence $f^{\circ} z_{\mu}$ converges weakly* in $\mathrm{L}^{\infty}(\Omega)$ to some function h_{f}. Moreover, it is also possible to prove that there is a subset S of Ω of measure zero and a family $\left\{v_{x}, x \in \Omega \backslash S\right\}$ of probability measures on \mathbf{R}^{n} such that for
each continuous $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ we have $h_{f}(x)=\int_{\mathbf{R}^{n}} f(\lambda) d v_{x}(\lambda)$ for almost every $x \in \boldsymbol{\Omega}$. We shall use the notation $\int_{\mathbf{R}^{n}} f(\lambda) d v_{x}(\lambda)=\left\langle v_{x}, f\right\rangle$. If almost all of the measures v_{x} are Dirac masses, then the sequence z_{μ} is compact in $L^{r}(\Omega)$ for any $r<\infty$ and vice versa. The measures v_{x} are called Young measures.

We shall use the following lemma.

Lemma 1. - Let K be a connected topological space and let $g: \mathrm{K} \times \mathrm{K} \rightarrow \mathbf{R}$ be a continuous function such that $g(x, y)=g(y, x) \neq 0$ for every $x, y \in \mathrm{~K}$, $x \neq y$ and $g(x, x)=0$ for every $x \in \mathrm{~K}$. Then either $g(x, y) \geqq 0$ for every $x, y \in \mathrm{~K}$ or $g(x, y) \leqq 0$ for every $x, y \in \mathrm{~K}$.

Proof. - We notice that if g changes sign on $\mathrm{K} \times \mathrm{K}$, then there exists $y \in \mathrm{~K}$ such that $g(\cdot, y)$ changes sign on K . Indeed, supposing this is not the case, we consider the sets $\mathrm{K}^{+}=\{y \in \mathrm{~K}, g(\cdot, y) \geqq 0$ on K$\}$ and $\mathrm{K}^{-}=\{y \in \mathrm{~K}, g(\cdot, y) \leqq 0$ on K$\}$. These sets are clearly closed and $\mathrm{K}^{+} \cap \mathrm{K}^{-}=\varnothing$. Since K is connected, we cannot have $\mathrm{K}^{+} \cup \mathrm{K}^{-}=\mathrm{K}$. Therefore the lemma will be proved if we show that under our assumptions the function $g(\cdot, y)$ does not change sign for any $y \in K$. Suppose this is not true and let $y_{0} \in \mathrm{~K}$ be such that $g\left(\cdot, y_{0}\right)$ changes sign. Let $\mathbf{K}_{+}=\left\{x \in \mathrm{~K}, g\left(x, y_{0}\right) \geqq 0\right\}$ and $\mathrm{K}_{-}=\left\{x \in \mathrm{~K}, g\left(x, y_{0}\right) \leqq 0\right\}$. We claim that K_{+}and K_{-}are connected. To see this, suppose that $\mathrm{K}_{+}=\mathbf{U} \cup \mathbf{V}$, where U, V are nonempty disjoint closed subsets of K_{+}. We can suppose $y_{0} \notin \mathrm{~V}$. We now consider the sets $\tilde{\mathrm{U}}=\mathrm{K}_{-} \cup \mathrm{U}$ and $\tilde{\mathrm{V}}=\mathrm{V}$. These are closed sets covering K , i.e. $\tilde{\mathrm{U}} \cup \tilde{\mathrm{V}}=\mathrm{K}$. We have

$$
\tilde{\mathrm{U}} \cap \tilde{\mathrm{~V}}=\left(\mathrm{K}_{-} \cap \mathrm{V}\right) \cup(\mathrm{U} \cap \mathrm{~V}) \subset\left(\mathrm{K}_{-} \cap \mathrm{K}_{+}\right) \backslash\left\{y_{0}\right\} .
$$

Since g does not vanish outside the diagonal, the last set is empty. Since K is connected and $\tilde{\mathrm{U}}$ is nonempty, the set $\mathrm{V}=\tilde{\mathrm{V}}$ must be empty. This shows that \mathbf{K}_{+}is connected. The proof for \mathbf{K}_{-}is the same. Let $x_{+} \in \mathbf{K}_{+} \backslash\left\{y_{0}\right\}$ and $x_{-} \in \mathrm{K}_{-} \backslash\left\{y_{0}\right\}$. The function $g\left(x_{+},.\right)$is positive at y_{0} and does not vanish on the connected set K_{-}containing y_{0}. Therefore it is positive on K_{-}and in particular $g\left(x_{+}, x_{-}\right)>0$. On the other hand, the function $g\left(x_{-}, \cdot\right)$ is negative at y_{0} and does not vanish on the connected set K_{+} containing y_{0} and therefore $g\left(x_{-}, x_{+}\right)=g\left(x_{+}, x_{-}\right)<0$, a contradiction. The proof is finished.

3. COMPACTNESS

Lemma 2. - Let K be a connected subset of $\mathrm{M}^{2 \times 2}$ and suppose that $\operatorname{rank}(\mathrm{X}-\mathrm{Y}) \geqq 2$ for every two distinct matrices $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$. Then either $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \geqq 0$ for all $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$ or $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \leqq 0$ for all $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$.

Proof. - This is an obvious consequence of Lemma 1.
Lemma 3. - Let K be a bounded Borel measurable subset of $\mathrm{M}^{2 \times 2}$ such that $\operatorname{rank}(\mathrm{X}-\mathrm{Y}) \geqq 2$ for any two distinct $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$ and suppose that $\operatorname{det}(\mathrm{X}-\mathrm{Y})$ does not change sign on $\mathrm{K} \times \mathrm{K}$. Let v be a probability measure on $\mathrm{M}^{2 \times 2}$ carried by K (i.e. $\mathrm{v}\left(\mathrm{M}^{2 \times 2} \backslash \mathrm{~K}\right)=0$) and satisfying $\langle v, \operatorname{det}\rangle=\operatorname{det}\langle v$, identity \rangle. Then v is a Dirac mass, i. e. $v=\delta_{\mathrm{A}}$ for some $A \in K$.

Proof. - Let $\mathrm{A}=\langle v$, identity \rangle be the centre of mass of v. Let b be the symmetric bilinear form on $\mathrm{M}^{2 \times 2}$ determined by det $\mathrm{X}=\frac{1}{2} b(\mathbf{X}, \mathrm{X})$. We can write

$$
\begin{aligned}
& \int_{\mathrm{M}^{2 \times 2}} d v(\mathrm{X}) \int_{\mathrm{M}^{2 \times 2}} d v(\mathrm{Y}) \operatorname{det}(\mathrm{X}-\mathrm{Y}) \\
& \quad=\int_{\mathrm{M}^{2 \times 2}} d v(\mathrm{X}) \int_{\mathrm{M}^{2 \times 2}} d v(\mathrm{Y})(\operatorname{det} \mathrm{X}+\operatorname{det} \mathrm{Y}-b(\mathrm{X}, \mathrm{Y})) \\
& \quad=\int_{\mathrm{M}^{2 \times 2}} d v(\mathrm{X})(\operatorname{det} \mathrm{X}+\operatorname{det} \mathrm{A}-b(\mathrm{X}, \mathrm{~A})) \\
& \quad=\operatorname{det} \mathrm{A}+\operatorname{det} \mathrm{A}-b(\mathrm{~A}, \mathrm{~A})=0
\end{aligned}
$$

Since $\operatorname{det}(\mathbf{X}-\mathrm{Y})$ does not change sign and vanishes only at the diagonal of $K \times K$, we see that the measure $v \otimes v$ is supported at the diagonal of $\mathrm{K} \times \mathrm{K}$ and therefore it must be a Dirac mass. The proof is finished.

Theorem 1. - Let $\mathrm{U}^{(j)}=\left(\begin{array}{cc}u_{1}^{(j)} & u_{2}^{(j)} \\ v_{1}^{(j)} & v_{2}^{(j)}\end{array}\right)$ be a uniformly bounded sequence of matrix-valued functions on Ω and suppose that the sequences curl $u^{(j)}$ and curl $v^{(j)}$ are compact in $\mathrm{H}^{-1}(\Omega)$. Let K be a closed connected subset of $\mathrm{M}^{2 \times 2}$ such that $\mathrm{rank}(\mathrm{X}-\mathrm{Y}) \geqq 2$ for any two distinct $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$ and suppose that $\operatorname{dist}\left(\mathrm{U}^{(j)}(x), \mathrm{K}\right) \rightarrow 0$ for a. e. $x \in \Omega$. Then the sequence $\mathrm{U}^{(j)}$ is compact in $\mathrm{L}^{p}(\Omega)$ for every $1 \leqq p<\infty$.

Proof. - Following L. Tartar [14] we consider a family of Young measures v_{x} associated to a subsequence of the sequence $\mathrm{U}^{(j)}$ we and use the div-curl lemma (see [14]) to infer that $\left\langle v_{x}\right.$, $\left.\operatorname{det}\right\rangle=\operatorname{det}\left\langle v_{x}\right.$, identity \rangle for almost every $x \in \Omega$. Our assumptions clearly imply that v_{x} is supported
on a bounded subset of K for a.e. $\boldsymbol{x} \in \boldsymbol{\Omega}$. From Lemma 2 and Lemma 3 we see that v_{x} is a Dirac mass for almost every $x \in \Omega$. The proof is finished.

4. RANK-ONE CONNECTIONS IN SETS OF GRADIENTS

The results of Section 3 can be used to generalize some results of [2], Section 5.

Theorem 2. - Let u: $\boldsymbol{\Omega} \rightarrow \mathbf{R}^{2}$ be a Lipschitzian function which coincides with an affine function A at the boundary of Ω and suppose that $\mathrm{D} u$ is continuous in Ω. If u is not affine, then there exist $x, y \in \Omega$ such that $\operatorname{rank}(\mathrm{D} u(x)-\mathrm{D} u(y))=1$.

Proof. - Let us first assume that Ω is connected and $\mathrm{A}=0$. Let $\mathrm{K}=\{\mathrm{D} u(x), x \in \Omega\}$ and let v be the probability measure on $\mathrm{M}^{2 \times 2}$ given by

$$
\langle v, f\rangle=\frac{1}{\operatorname{meas} \Omega} \int_{\Omega} f(\mathrm{D} u(x)) d x
$$

for every continuous function $f: \mathbf{M}^{2 \times 2} \rightarrow \mathbf{R}$. Under our assumptions the set K is bounded and connected. The measure v is carried by K. We claim that $\langle v, \operatorname{det}\rangle=\operatorname{det}\langle v$, identity \rangle. For this it is enough to prove that under our assumptions we have $\int_{\Omega} \mathrm{D} u(x) d x=0$ and $\int_{\Omega} \operatorname{det} \mathrm{D} u(x) d x=0$. This is well known if u is Lipschitzian and compactly supported in Ω. (See, for example, [11].) The general case can be brought to this case by extending u by 0 outside Ω and integrating over a sufficiently large ball in which Ω is compactly contained. We can now apply Lemma 2 and Lemma 3 and we see that if $\mathrm{D} u$ is not constant, then there must be rank-one connections in K. The proof in the case when Ω is connected and $A=0$ is finished. The general case follows easily, since clearly $u=\mathrm{A}$ on the boundary of every connected component of Ω and since we can replace u by $u-\mathrm{A}$, if necessary.

Remarks. - 1. For any open set $\Omega \subset \mathbf{R}^{2}$ it is possible to construct a Lipschitzian function $u: \Omega \rightarrow \mathbf{R}^{2}$ vanishing at the boundary of Ω and a bounded countable set $S \subset M^{2 \times 2}$ such that there are no rank-one connections in the closure K of $\mathrm{S}, 0 \notin \mathrm{~K}$, and $\mathrm{D} u \in \mathrm{~S}$ a.e. in Ω. See [13].
2. For examples showing that Theorem 2 fails in higher dimensions (except, perhaps, for mappings from $\Omega \subset \mathbf{R}^{2}$ to \mathbf{R}^{3}) see [2].

5. REGULARITY

Theorem 3. - Let K be a bounded subset of $\mathrm{M}^{2 \times 2}$ and suppose that there is $\lambda>0$ such that either $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \geqq \lambda|\mathrm{X}-\mathrm{Y}|^{2}$ for each $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$ or $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \leqq-\lambda|\mathrm{X}-\mathrm{Y}|^{2}$ for each $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$. Let $v: \Omega \rightarrow \mathbf{R}^{2}$ be a Lipschitzian function satisfying $\mathrm{D} v(x) \in \mathrm{K}$ for almost every $x \in \mathrm{~K}$. Then there is $p>2$ such that v belongs to $\mathrm{W}_{\mathrm{loc}}^{2, p}(\Omega)$. In particular, the gradient $\mathrm{D} v$ of v is Hölder continuous.

Proof. - We will consider only the case $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \geqq \lambda|\mathrm{X}-\mathrm{Y}|^{2}$. For the proof in the case $\operatorname{det}(\mathrm{X}-\mathrm{Y}) \leqq-\lambda|\mathrm{X}-\mathrm{Y}|^{2}$ it is enough to replace det by - det in the formulae below. Let $a \in \mathbf{R}^{2}$ and for $h>0$ let $v_{h}(x)=(v(x+h a)-v(x)) / h$. (We can extend v by zero outside Ω, for example.) Let η be a smooth nonnegative function compactly supported in Ω. Let $b \in \mathbf{R}^{2}$. For sufficienly small h we have

$$
\begin{aligned}
0 & =\int_{\Omega} \operatorname{det} \mathrm{D}\left(\eta\left(v_{h}-b\right)\right) d x \\
& \geqq \int_{\Omega}\left(-\eta\left|\mathrm{D} v_{h}\|\mathrm{D} \eta\| v_{h}-b\right|+\eta^{2} \operatorname{det} \mathrm{D} v_{h}\right) d x \\
& \geqq \int_{\Omega}\left(-\eta\left|\mathrm{D} v_{h}\right|\left|\mathrm{D} \eta \| v_{h}-b\right|+\lambda \eta^{2}\left|\mathrm{D} v_{h}\right|^{2}\right) d x \\
& \geqq-\frac{1}{2 \lambda} \int_{\Omega}|\mathrm{D} \eta|^{2}\left|v_{h}-b\right|^{2} d x+\frac{\lambda}{2} \int_{\Omega} \eta^{2}\left|\mathrm{D} v_{h}\right|^{2} d x
\end{aligned}
$$

We see that the L^{2}-norm of $\mathrm{D} v_{h}$ on compact subsets of Ω is estimated by the L^{2}-norm of v_{h}. We can now use the well-known Nirenberg's Lemma to infer that $\mathrm{D} v \in \mathrm{~W}_{\text {loc }}^{1,2}(\Omega)$. It is well-known that if there exists $\mathrm{C}>0$ such that

$$
\int_{\Omega} \eta^{2}\left|\mathrm{D} v_{h}\right|^{2} d x \leqq \mathrm{C} \int_{\Omega}|\mathrm{D} \eta|^{2}\left|v_{h}-b\right|^{2} d x
$$

for every η as above and every $b \in \mathbf{R}^{2}$, or in another words, if v_{h} satisfies the Caccioppoli's inequality, then there exists a $p>2$ such that the L^{p}-norm of $\mathrm{D} v_{h}$ on every set $\widetilde{\Omega}$ compactly contained in Ω is bounded by $\mathrm{C}_{1}\left\|v_{h}\right\|_{\mathrm{L}^{2}(\Omega)}$, where C_{1} depends only on $\mathrm{C}, p, \widetilde{\Omega}$ and Ω. (For a proof of this which is based on the technique of reverse Hölder inequalities see [6].) Using Nirenberg's Lemma again, we see that $\mathrm{D} v$ is bounded in $\mathrm{W}_{\text {loc }}^{1, p}(\Omega)$. The Hölder continuity of $\mathrm{D} v$ follows from the Sobolev Imbedding Theorem. The proof is finished.

Corollary. - Let K be a closed connected smooth submanifold of $\mathrm{M}^{2 \times 2}$ such that $\operatorname{rank}(\mathrm{X}-\mathrm{Y}) \geqq 2$ for any two distinct $\mathrm{X}, \mathrm{Y} \in \mathrm{K}$. Suppose moreover
that K is "elliptic", or in other words, that for any $\mathrm{X} \in \mathrm{K}$ the tangent space to K passing through X does not contain rank-one directions. Then every Lipschitz function $v: \Omega \rightarrow \mathbf{R}^{2}$ satisfying $\mathrm{D} v(x) \in \mathrm{K}$ for a. e. $x \in \mathrm{~K}$ is smooth.

Proof. - We notice that the ellipticity condition together with Lemma 1 implies that for each bounded subset K_{1} of K there exists $\lambda>0$ such that either

$$
\operatorname{det}(X-Y) \geqq \lambda|X-Y|^{2} \quad \text { for every } \quad X, Y \in K_{1}
$$

or

$$
\operatorname{det}(X-Y) \leqq-\lambda|X-Y|^{2} \quad \text { for every } \quad X, Y \in K_{1}
$$

We can use Theorem 2 to infer that $\mathrm{D} v$ is Hölder continuous and that v belongs to the space $\mathrm{W}_{\mathrm{loc}}^{2,2}(\Omega)$. Since $\mathrm{D} v(x) \in \mathrm{K}$ in Ω, the derivatives $\frac{\partial}{\partial x_{i}} \mathrm{D} v(x)$ belong to the tangent space of K at $\mathrm{D} v(x)$ for a.e. $x \in \Omega$. Since $\mathrm{D} v$ is Hölder continuous and K is elliptic, we see that $\frac{\partial}{\partial x_{i}} v(x)$ can be viewed as solutions of a certain linear first order elliptic system with Hölder continuous coefficients. Therefore $\mathrm{D}^{2} v$ is Hölder continuous. (See, for example, [11].) Applying the usual procedure of improving regularity we see that v must be smooth. The proof is finished.

6. EXAMPLES

Classical examples of K's which are elliptic in the above sense are

$$
\mathbf{K}_{0}=\left\{\mathbf{X} \in \mathbf{M}^{2 \times 2}, \mathbf{X} \text { is symmetric and Trace } \mathbf{X}=0\right\}
$$

and

$$
K_{1}=\left\{X \in M^{2 \times 2}, X \text { is symmetric, positive definite, and } \operatorname{det} X=1\right\} .
$$

Clearly K_{0} can be viewed as the tangent space to K_{1} at the unit matrix.
The following examples arise in connection with problems concerning invariant "wells" which appear in the theory of microstructures. (See, for example, [3], [4], [9], and [10] for motivation). Let $A_{1}, \ldots, A_{m} \in M^{2 \times 2}$ with $\operatorname{det} \mathrm{A}_{k}>0$ for each $k=1, \ldots, m$ and let

$$
\mathrm{K}_{w}=\mathrm{SO}(2) \cdot \mathrm{A}_{1} \cup \ldots \cup \mathrm{SO}(2) \cdot \mathrm{A}_{m} .
$$

It is easy to check that if K_{w} does not contain rank-one connections (i.e. rank $(X-Y) \geqq 2$ for any two distinct $\left.X, Y \in K_{w}\right)$, then there exists $v>0$ such that $\operatorname{det}(\mathbf{X}-\mathrm{Y}) \geqq v|\mathrm{X}-\mathrm{Y}|^{2}$ for each $\mathrm{X}, \mathrm{Y} \in \mathrm{K}_{w}$. We see that in this case Lemma 3 and Theorem 3 can be applied to K_{w}. This shows, for example, that if K_{w} does not contain rank-one connections, then the deformations $\varphi: \Omega \rightarrow \mathbf{R}^{2}$ satisfying $\mathrm{D} \varphi \in \mathrm{K}_{w}$ a.e. in Ω belong to $\mathrm{C}_{\mathrm{loc} .}^{1, \alpha}(\Omega)$
for some $\alpha>0$. Using this it is not difficult to see that if K_{w} does not contain rank-one connections, then $\mathrm{D} \varphi \in \mathrm{K}_{w}$ a.e. in Ω implies that in fact $\mathrm{D} \varphi$ is locally constant in Ω.

We can also consider continuous families of invariant wells. A simple example is the following: let $\mu:[0,1] \rightarrow \mathbf{R}$ and $\lambda:[0,1] \rightarrow \mathbf{R}$ be smooth strictly positive functions with $\mu^{\prime}(t)>0$ and $\lambda^{\prime}(t)>0$ for all $t \in[0,1]$ and let $K_{c}=\underset{t \in[0,1]}{\cup} \operatorname{SO}(2) \cdot\left(\begin{array}{cc}\lambda(t) & 0 \\ 0 & \mu(t)\end{array}\right)$. It is easy to check that K_{c} satisfies the assumptions of Theorem 1 and Theorem 3.

ACKNOWLEDGEMENTS

I thank John Ball for several useful suggestions. I also thank the referee for useful remarks.

REFERENCES

[1] J. M. Ball, A Version of the Fundamental Theorem for Young Measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod Eds., pp. 107-215, Springer-Verlag.
[2] J. M. Ball, Sets of Gradients with No Rank-One Connections, J. Math. pures et appl., Vol. 69, 1990, pp. 241-159.
[3] J. M. Ball and R. D. James, Fine Phase Mixtures as Minimizers of Energy, Arch. Rat. Mech. Anal., Vol. 100, 1987, pp. 13-52.
[4] J. M. Ball and R. D. James, Proposed Experimental Tests of a Theory of Fine Microstructures and the Two-Well Problem, preprint, 1990.
[5] L. C. Evans, Classical Solutions of Fully Nonlinear Second Order Elliptic Equations, Comm. Pure Appl. Math., Vol. 25, 1982, pp. 333-363.
[6] M. Giaquinta, Multiple Integrals in the Calculus of Variations, Princeton University Press, 1983.
[7] N. Firoozye, R. D. James and R. Kohn (to appear).
[8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer, 1983.
[9] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, in Symp. Material Instabilities in Continuum Mechanics, pp. 217-242, J. M. Ball Ed., HeriotWatt, Oxford University Press, 1988.
[10] J. P. Matos, Young Measures and the Absence of Fine Microstructures in the $\alpha-\beta$ Quartz Phase Transition, preprint, 1991.
[11] Ch. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966.
[12] V. Ṡverák, On the Problem of Two Wells (to appear).
[13] V. Šverák (to appear).
[14] L. Tartar, The Compensated Compactness Method Applied to Systems of Conservations Laws, in Systems of Nonlinear Partial Differential Equations, J. M. Ball Ed., NATO ASI Series, Vol. C111, Reidel, 1982.
(Manuscript received May 21, 1991; revised August 21, 1991.)

