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ABSTRACT. - We study the existence of solutions to a nonlinear func-
tional differential system that describes the equilibrium of a dynamic
stochastic economy with heterogeneous agents facing borowing con-

straints. Our model is a generalization of the one studied in Scheinkman
and Weiss [3] to display the effect of borrowing constraints in aggregate
economic activity, and the mathematical techniques that we developp can
be useful to deal with more complex models.
The system has aspects of a free boundary value problem in which there

are different equations for different domains, with the domains themselves
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524 A. CONZE, J.-M. LASRY AND J. A. SCHEINKMAN

and their boundary determined by the solutions. It also has some of the

characteristics of hyperbolic systems that one would obtain by differentiat-
ing Hamilton-Jacobi equations. These aspects combine to require, at least
apparently, a very specific new approach to the existence problem. One
payoff of this technique is that the existence proof is also an algorithm
for computation.

RESUME. - On etudie l’existence de solutions d’un systeme differentiel
fonctionnel non lineaire decrivant 1’equilibre d’une economic stochastique
dynamique avec des agents heterogenes soumis a des contraintes d’endette-
ment. Notre modele est une generalisation de celui etudie par Scheinkman
et Weiss [3] qui mettait en valeur les effets de contraintes d’endettement
sur l’activité economique agregee, et sa resolution introduit des techniques
mathematiques utilies pour la resolution de modeles plus complexes.

Le systeme possede certains aspects d’un probleme avec frontiere libre
pour lequel il y a des equations differentes pour differents domaines, les
domaines et leur frontiere etant determines par les solutions. Il possede
egalement certaines des caracteristiques des systemes hyperboliques obtenu
par differentiation d’equations de Hamilton-Jacobi. La combinaison de
ces aspects nécessite une approche specifique du probleme d’existence.
L’un des avantages de cette technique est que la preuve d’existence fournit
un algorithme de calcul des solutions.

1. INTRODUCTION

Our purpose is to study a system of non-linear functional differential

equations [see equations (3 .1 ) to (3 . 6) below] that arise in the study of a
dynamic model in economics that generalizes the model developed in

Scheinkman and Weiss [3]. The system comes from a dynamic model in
which each agent has to solve a stochastic optimal control problem.

This paper should be of interest to mathematicians: since it is very non

classical, system (3 .1 ) to (3. 6) requires mathematical developments that
are, at least to us, novel. The system at first glance looks like a system of
non linear delay equations. Actually, as the sign of the delay is reversed,
one can not consider these equations as delay equations. Moreover, as
the coefficients of the equations are discontinuous functions of the sol-
utions, this system has a flavor of a free boundary problem, i. e. one in

which there are different equations for distinct domains, with the domains
themselves and their "free" boundary determined by the solution. Finally
this system has also some of the characteristics of the hyperbolic system
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525A FUNCTIONAL SYSTEM IN ECONOMICS

that one would obtain by differentiating an Hamilton-Jacobi equation.
These aspects combined to require, at least apparently, a very specific new
approach to the existence problem.
The paper should also be of interest to economists: the proof of the

existence of at least one solution to system (3 .1 ) to (3. 6) provides an
entirely constructive algorithm and makes easy to produce simulations of
the model.

Similarly to what often occurs when deriving the Hamilton-Jacobi-
Belman equation for an optimal control problem, we first make an heuris-
tic derivation of system (3 . 1 ) to (3. 6), and then show that any solution
to this system provides an equilibrium of the model.
The paper is organized as follows: in section 2, we introduce the model

and write it as an equilibrium problem in which to every agent is associated
an optimal control problem. We then expose heuristic considerations that
provide system (3 .1 ) to (3 . 6).

In section 3, we prove that every solution of this system is an equilibrium
solution.

Section 4 presents the existence of a least one solution to system (3 .1 )
to (3.6). We first introduce a reduced system that allows us to construct
a map from a functional space to itself. We show that solutions of system
(3.1) to (3 . 6) are fixed points of this map. We then expose the main
theorem that claims the existence of at least one fixed point.

Sections 5, 6 and 7 provide a collection of results that allows us to
prove the main theorem. Section 5 contains results concerning the reduced
system. In section 6, we construct a supersolution and a subsolution to
the fixed point problem. In section 7, we show the convergence of the
algorithm that provides a fixed point.

Finally, in section 8 we present a complementary results in a particular
case of the model.

2. THE MODEL

Consider an economy with a large number (infinite) of each of two
types of infinitely long lived individuals, indexed by i =1, 2. Each "agent"
consumes a single good and also works in the production of that good.
His labor productivity is however random and determined by the "state"
of the economy. At any time the state j is an element of a finite set J
with 2N elements. In state j one unit of labor of type 1 individual produces
a~ units of the consumption good while one unit of labor of type 2
individual produces cx - j units of the consumption good. If state j prevails
a state change will occur with an exponential probability distribution with
mean duration I/pj. If a state change occurs, the probability that the next

Vol. 8, n° 5-1991.



526 A. CONZE, J.-M. LASRY AND J. A. SCHEINKMAN

state is kEJ is given by where for convenience we choose v, ,=0.
We write 03BBj, k = Pj and the process {st} represents the state at time t.

( 1 ) In order to make the two agents symmetric from an ex-ante point of
view, we require that associated to each state j there is another state cp J)
such that CXcp (j) = cx - j’ and ~~ ~ ~~, _ k = ~,~, k for all k E J.
This hypothesis allows us to write without ambiguity - j in place of cp (/).
At each point in time an individual must choose how much to work

and how much to consume. There is also an asset that the individuals can
use to save. We choose units in such that when any one type holds a unit
of the asset per capita, the other must hold zero. The initial distribution
of money is assumed to be the same within each type. At each time t, at
each event (0 E Q, let p (t, o) denote the price of a unit of the consumption
good. Agents of type i, i = 1, 2, take p (t, ~) as given and solve the problem
(P ‘) [equations (2 . 1 ) to (2 . 4)] :

subject to

Notice that any solution to (P’) must satisfy

In (P i) the individual chooses any consumption and working plan that
satisfies the constraint that no borrowing is allowed. An equilibrium is a
stochastic process p (t, co) such that if co) and co) solve

for i =1, 2, then

(demand for money equals supply), and

(demand for goods equals supply). Notice that since constraint (2.3)
appears in (Pi), equation (2.7) actually follows from equation (2.6).

In principle one could find an equilibrium by considering for each

process p (t, co) the process yi (t, co) that solves and checking whether

(1) Formally, {st} is a Markov process on a probability space (S2, J, P) with
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527A FUNCTIONAL SYSTEM IN ECONOMICS

(2.6) holds. Economic considerations suggest, however, another route to
compute at least one equilibrium. We will give here an heuristic argument
that an equilibrium should satisfy a certain set of non-linear equations
and later proceed to show precisely that a solution to these equations is
in fact an equilibrium and that these equations have a solution as well as
exhibiting an algorithm to compute it.

Let z (t, (o) denote the average amount of asset held by type 1 at time t
and in event co. Notice that due to the no-borrowing constraints, we may
assume Oz(t, co) 1. We will look at an equilibrium where

where p is a C~ 1 function of its first argument. In reality it is more
convenient to work with the price of money in terms of goods, so we
write qj (z) = 1/p (z, j). In order to treat the two types symmetrically, we
assume that

Thus, one may think that consumers take z (t, c~) and the functions

qj : [0, 1] - R for all j E J as given, and solve (P i). Assume further that
consumers forecast that z will be an absolutely continuous functions such
that, where the derivative exists,

where is function for each j E J.
With this structure, we may redefine an equilibrium as a set of functions

qj : [0, 1 ] -~ R, j E J, with q~ (z) = q _ ~ ( 1- z), and a stochastic process z (t, co)
with values in [0, 1], such that if consumer i solves (P ‘) with

and y2 (t, ~) =1- z (t, ~), i. e. type i holds the

predicted amount of money. Notice that the usual dynamic programming
arguments imply that in such an equilibria, ci (t, co) = ci (z (t, and simi-

larly, h (t, ~) = l‘ (z (t, M)).
Other economic considerations can be used to further characterize the

equilibria. First, notice that since U’ (0) = +00, for any z, at least one of
the two types must work. Since each type has an unlimited potential
supply of labor and has a linear disutility for it is natural to conjecture
that at each state j there exist a z* such that if type 1 works,
whereas if z >_ z* type 2 works. The intuition here is that the richest type
will demand most in order to sacrifice its leisure.

Let us define

Vol. 8, n° 5-1991.
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Since U is strictly concave, g = (U’) -1 is well defined, and hence if z > z*
[using (2 . 5) for i = 2, (2 . 8) and (2 . 10)], we obtain

Similarly, if z  z*, then

At we are free to define and we choose = o.

The function aj can be interpreted as the marginal value of a unit of
money to consumer of type 1 when the average holdings of his type is z
and he holds z. As such it is natural to conjecture that given that the
utility function for consumption is strictly concave, z t2014~ a~ (z) will be strictly
decreasing. Since both types have the same marginal disutility per unit of
labor the value zj should be determined by

Clearly such a zj does not need to exist. We will show however that or~~
can always find an equilibrium where (2 .11 ) has a solution in [0, 1].

Finally, we notice that "money" yields no direct utility and is orily held
to finance future consumption. As of time t the marginal utility of money,
in equilibrium, at time T is given by the random variable

(0)). Since money yields no direct utility, this random

variable should be an ff -martingale. Using a first-order expansion, we
get,

Making dt - 0, we get

Finally, then, in equilibrium, a~ ( 1 ) = 0, and we get

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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3. THE MAIN DIFFERENTIAL SYSTEM

Putting together the results that have been heuristically derived in the
previous section, we get the set of non linear functional differential equa-
tions which we call system (S) (equations (3 . 1 ) to (3 . 6)): for all j E J,

with

and

Assuming now that we have a solution to system (S), we want to
show that the corresponding process of wealth z is such that

z (t, co) [resp. 1- ~ (t, is a solution for problem (resp. (P~)). This
is provided by the following theorem:

THEOREM 1. - Let solution of system (S). Let z (t, c~) be the
process defined = (z) with j= s ( t, 03C9) if 03B1j a J (z)~03B1-ja-j ( 1- 2), and
Z=0 otherwise. Then the process z is a solution of problem (P):

subject to

with

. Since aj and a- j are strictly positive and CIon [0, 1], it is obvious that
i is essentially bounded. We will only consider solutions to (P) such

Vol. 8, n° 5-1991.
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that ess sup | + t, 03C9)| + oo. From the previous remark, z satisfies this
requirement. The proof will use the following result:

LEMMA 1. - 

Proof of the lemma. - We first show that for all ~0 and A~>0,

We set Oz = z (t + Ot) - z (t). Since z is essentially bounded, for

some R > o. Using this and a first order expansion, we get that

Now how evaluate

Using equations (3.1) and (3.2), We have (3.7).
Now consider the case where (z (t)) = ( 1- z (t)). Con-

ditionally on s (t + i) = s (t) for every we have z (t + i) = z (t), and
hence

and by continuity of the ak and a’k, we get

and (3 . 7) is established.
The law of iterated expectations then holds for all i > o, i. e.

Q.E.D.

We now give the proof of theorem 1.

Proof of theorem 1: Let

Annales clo I’Institut Henri Poincaré - Analyse non linéaire



531A FUNCTIONAL SYSTEM IN ECONOMICS

Then it is easy to verify that then

while then

In particular, when y = z and y=z, we get using the expression giving z
that if CXj aj (z) > CXj aj ( 1- z), then

while if (x~ a~ (z)  ri- j a- j ( 1- z), then

By concavity of L, we obtain for all T>O.

Since as (t) (z (t)) has bounded variation we get

Since ess sup y ~ .  +00, we have that is bounded on each [0, T] with
T>O. Also z is in [0, 1] and thus is bounded. Hence, since (z (t))
is a bounded martingale, we get by applying the results on stochastic
integral against a square integrable martingale as in [1] that the expectation
of the second integral is zero. We also have, since z (t) and as ~t~ (z (t)) are

Vol. 8, n° 5-1991.
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bounded that lim (z (T)) z (T) = 0, and thus
T+oo

Q.E.D.

4. EXISTENCE RESULTS

This section provides a necessary and sufficient condition for the exis-
tence of a solution to system (S). The proof of this result is quite long,
but entirely constructive. Hence, the mathematics which follows also pro-
vide an algorithm for the numerical construction of a solution.
The methodology that is used here is first to show that a solution of

system (S) is a fixed point of a certain map. The monotony of this map,
and the characterization of a sub and a supersolution allows us to construct
two sequences of functions that converge to fixed points, i. e. solutions of

system (S).
We denote by E the space of strictly decreasing, strictly positive continu-

ous functions on [0, 1]. Since #J=2N, we have 

4.1. A reduced system

Let v, a, fl be three given constants with v > 0 and 0  a, p  1.

DEFINITION 1. - For all pair (u, v) E E X E, we define the switch point z*
by:

Since z u (z) - flv (z) is strictly decreasing, this defines a unique point
z* E [o, 1].

Given (u, v) in E x E, we consider the functional differential system (R)
(equations (4 . 1 ) to (4 . 8) below) in two unknown functions a and b:

with

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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and

Note that only two of the three conditions of (4. 6) to (4. 8) hold when
z* = 0 or z* =1, while the three conditions hold when z* E ]o, 1 [. But in
this last case, only two of the three conditions are independent.

THEOREM 2. - Assume that g is Cl, decreasing from ]0, + oo[ into itsef
and the map b H g (a/b)/b is increasing. For any pair (u, v) E E x E, there
exists a unique solution (a, b) to system (R). Moreover, if two pairs (ul, vl)
and (u2, v2) in E x E satisfy u2 and v2, and f (al, bl) and (a2, b2)
are the solutions to system (R) corresponding to (ul, vl) and (u2, v2) respec-
tively, then one has a2 and b2 .
The proof of this theorem will be given later in section 5.
Note that since the condition that is increasing

is equivalent to the condition (2)

This may be easily seen by writting that (set c = g (a/b), i. e. a/b = U’ (c))

Also since U’ is decreasing, g is decreasing..
Theorem 2 allows us to define a family of maps F (a, P, v; . , . ) from

E x E into itself given by

where (a, b) is the unique solution of system (R).

Remark 1. - One can check that simultaneous interchange of a, 03B2 Band
u, v leads to interchange a and b, that is: F (a, ~i, v; u, v) = (a, b) if and only
if F ( (3, oc, v; v, u) = (b, a).

(2) The right hand side of (4.9) is the coefficient of relative risk aversion of the utility
function U.

Vol. 8, n° 5-1991.
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4.2. The complete system as a fixed point problem

This section will show how to construct a solution to system (S) by
using the map F defined above.

For all j E J, we set

Since ~,~, k = ~, _ ~, _ k, we have ~,~ _ ~ _ ~.
Since ~,~ _ ~ _ ~, remark 1 implies that

Hence, for any family of functions in E, we can define another
family of functions in E by:

The map H is by theorem 2 increasing, i. e. for any u, u in EJ such that

V j E J, u >- u we have V j E J, H (u) >_ H (u) .
Let G : EJ  EJ be given by

Note that since are positive, the map G is also increasing. Hence,
the map H ° G is increasing from E’ into itself.
One has the following result:

THEOREM 3. - A family of functions is a solution of
system (S) if and only if its is a fixed point for the map 

Proof. - Suppose a E EJ is a fixed point of H ~ G. Fix j E J, and set

u = ~ v = ~ ~, _ ~, k ak. By equation (4. 6), the switch point zj of the
keJ J 

’ 

keJ J 
’

pair (u, v) is also the switch point of the pair a _ ~). Hence, equations
(4 . 1 ) to (4. 5) imply that equations (3 . 1 ) to (3 . 4) are satisfied. Also (4. 6)
together with 1 ] implies that i. e. (3 . 5). More-

over, if the equality holds, then and (4. 7) implies equation (3. 6).
Hence, a fixed point of H°G is a solution of system (S).

Conversely, let a be a solution of system (S). Then, (4.1) implies that
and that the switch point z* of a _ ~) is well defined. If

z* E ]o, 1 [, then we have 
_ _

and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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By continuity, (3 . 2) implies that u (z*) _ (~,~ + ~,) a~ (z*). Exchanging j by
- j gives v ( 1- z*) _ (~,~ + ~,) a _ ~ ( 1- z*). If z* =1, then (3 . 6) gives
u ( 1 ) _ (~,~ + ~.) a J ( 1 ). Exchanging j by - j gives from (3 . 2) that for all
ZE]O, 1[, v (z)  (~,~ + ~,) a _; (z). Hence, since we have

(x~ u (1) ~ cx- j v (0). If zj = 0, then exchanging j in - j gives oc~ u (0) _ a _ ~ v ( 1 ).
Hence, zj is also the switch point of the pair (u, v). From (3 . 1 ) to (3 . 4),
we have that (4.1) to (4.5) are satisfied. From the above arguments
showing that zj is the switch point of (u, v), we get equations (4.6) to
(4. 8).

Q.E.D.

Showing that system (S) has a solution is now reduced to demonstrate
the existence of fixed point for H ° G. As this map is increasing, the main
part of the proof consists in showing the existence of a subsolution a and
a supersolution a. This will be done in section 6. Because of the lack of
compactness of EJ, we need to complete the proof with a convergence
result for an defined by and aO=r¿or which is in
section 7.

4.3. The existence result (main theorem)

DEFINITION 2 (Undecomposability of the model). - For i and j in J, we
say that the pairs (i, - i ) and ( j, - j) are connected if there exists a sequence
io, ..., im in J such that and im = ~ j (i. e. im = - j) such that

..., m.
Recall that ~, _ m, _ p = ~,m, p for all Hence, the preceding

definition of a path just depend on the sets (i, - i) and ( j, - j) (and not
on the ordered pairs) and this connection relation is an equivalence
relation.
We will suppose that each pair (i, - i) is connected to any pair ( j, - j).

If this is not the case, one should break J in its connected components
and study them independently.

DEFINITION 3. - We call w-subset, or working states subset, any set
K c J such that

Hence the cardinality of K is equal to N for any w-subset.
To each w-subset, we associated the N x N square matrix 0=0(K) with

positive coefficients i, j E K x K) defined by:

Using the hypothesis that ~,i, J = ~, _ ~, _ ~ and for all i, j and k in J,
one verifies that 7~m, n > 0 implies 8~, ~ ~ 0 where (i, j) is the unique pair such
Vol. 8, n° 5-1991.
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that I = , 
From this, one deduces that the

connectivity hypothesis made previously implies the classical notion of
undecomposability for the matrix 8, i. e. for any (i, j) E K x K, there exists
a path io, ... , im such that io = i, and 9ik -1 ~ ik # 0 for all k =1, ..., m.
We now define p (K) the largest eingenvalue of 8 (K), and a number

p > 0 which plays a crucial role for our system:

As the set of w-subset is finite, there exists at least one w-subset Ko such
that p = p (Ko).
We now state the main theorem:

THEOREM 4. - If the relative risk aversion is less than or equals to one,
that is

then a necessary and sufficient condition for the existence of at least one
solution to the system (S) is that p satisfies p > 1.

Let us recall that condition (4 .11 ) is equivalent to the hypothesis on
the function g = U’ - 1 made in theorem 2, namely g is decreasing and
b H g (a/b)/b is increasing.
One can easily give sufficient conditions which imply p > 1. For instance,

assume that there exist k E J such that

Consider now a w-subset K such that - k C K. From the definition of 8i, ~,
one gets

But, as ~,k, - k = ~ - k~ k and ~,k = ~, _ k, this gives us 6 _ k, _ ~ > 1. Considering
the vector with Xj=O and x _ k =1, it is easy to

check, since 8 has positive coefficients, that for all j in K, we have

Applying the Perron-Frobenius theorem as stated in

Nikaido [2], we get p (K) > 1. Hence, we have the

COROLLARY l. - If relative risk aversion is less than or equals to one,
and if condition (4 . 12) holds, then the system (S) has at least one -solution.

In the case N = 1 , 8 (K) reduces to a scalar for every K. We set a = ocl,
[i = a _ 1 and 03BB =03BB1, -1=03BB-1, 1, and we get the:

COROLLARY 2. - If N =1 and the relative risk aversion is less than or

equals to one, then a necessary and sufficient condition for the existence of
at least one solution to system (S) is that inf ~ a/(3,  

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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4.4. Decomposition of the proof of the main theorem

Theorem 4 follows from following propositions 1 to 4 bellow.

Propositions 2 and 3 consist in constructing super and sub solutions to
the fixed point problem of the map H ° G. Proposition 4 consists in

showing that starting either from the super or sub solution, the sequence
of functions defined in section 4.2 converges to a fixed point of H ° G.

PROPOSITION 1. - When p  1, the system (S) has no solution.
Proof. - The proof is by contradiction. We assume that p ~ 1 and that

there exist a solution to system (S). Let K be the w-subset defined
by j E K if 1/2 and by choosing any of the two integers j and - j if
z* =1 /2, where zj denotes the switch point associated to the pair a- ~).
Such a w-subset exists and is unique since for all j, z* =1- z*_ J. For all
j E K, we have a~ (z) _- 0 and cp~ (z) > 0 if z  1 /2. Hence, equation (3 . 2) and
continuity of the ak imply

For all j ~ K, we have z* =1- z*_ ~ and - j E K. Hence, 1 /2 implies

From these two equations, we get

Hence, with 6 = o (K) and Ak=ak(1/2) for all kEK, we get 
Let us first suppose that p  1. From one deduces that en

is a contraction for n sufficiently large (see Nikaido [2]). As e has positive
coefficients, A ~ e A implies by induction that A ~ en A. hence, A = 0, which
contradicts ak ( 1 /2) > o.
We now turn to the case where p == 1. If A ~ e A, then one can prove

that for some E > 0 and mEN. Also, (8m/( 1 + ~))n is a

contraction for n sufficiently large. Hence A = 0. If A = e A, then

and

This last equality implies that z* =1 /2 for j~ K. Hence

Vol. 8, n° 5-1991.
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This establishes that B=MB where and

M=(mi,j.iEJ,jEJ) with mi, j = ~i, jl(~i + ~). From and

L m~, j = ~,i/(~,i + ~.)  l, we deduce that M is a contraction. Hence, B = 0
jeJ J

which contradicts a j ( 1 /2) > o.

PROPOSITION 2. - For any y>O, there exist a function A~C1 ([0, 1])
such that

and

If the constant y satisfies y >_ sup { cxjlJ E cxjlJ E J}, then a = E E’
where a~ = A for all j E J satisfies a >_ H (G (a)), i. e. a is a supersolution.

Proof. - The proof is in section 6.

PROPOSITION 3. - Suppose p > 1. Let K be a w-subset such that p = p (K).
Let B = K) be a positive eigenvector of the matrix 8 = 8 (K) associated
to the eigenvalue p. For j E ( - K), define B~ by 
define B’’ by For ~ and ~ sufficiently small, is a

subsolution [i. e. one has a E E’ and   H (G (a))].

Proof’. - The proof stays in section 6.

PROPOSITION 4. - If there exists a and a in E’ such that

then the map HO G has at least one fixed point. More precisely, the

sequences (an) and (a") defined by

are respectively increasing and decreasing and converge in E’ to respectively
a* which are fixed points of H  G.
The proof of proposition 4 is in section 7. From proposition 3 we may

choose 8 small enough to obtain a~a. Hence this proposition gives a
constructive algorithm to find two solutions a* and a* of our equations.
In all simulations we did find a* = a* . But at the time there is no theoretical
evidence that this equality always holds.
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5. PROOF OF THE RESULTS CONCERNING
THE REDUCED SYSTEM

The proof of theorem 2 will be first established in a particular case,
which we call balanced case, then in the general case by an approximation
procedure. We set f (a, b)=g(ajb)jb. The assumptions made on g imply
that a H f (a, b) is decreasing and that b H f (a, b) is increasing.

5.1. The balanced case

DEFINITION 4. - (u, v) E E X E is said to be balanced 
a u ( 1 ) v (0), i. e. the corresponding switch point of definition 1 is in ]0, 1 [.

PROPOSITION 5 (proof of theorem 2 in the balanced case). - Let a, [i
and v be given constants such that v > 0 and 0  oc, (3  1. Let f be a C1
function from ]0, + ~[2 into ]0, + oo [. Let (u, v) E E + E and let z* E ]0, 1[
be the associated switch point. Then there exists a unique pair (a, b) solution
to (5. 1 ) to (5. 7):

with

and

Moreover, a and b satisfy

Proof of proposition 5. - Set w (z) = v ( 1- z) and c (z) = b ( 1- z). From
(5 . 1 ) to (5 . 7) we obtain

with
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and

This new system is equivalent to a set of two Cauchy problems. The first
one is a forward Cauchy problem consisting in two non linear O.D.E. on

The second one is a backward Cauchy problem consisting in two non
linear O.D.E. on [0, z*]:

Note that replacing (P, z, a, c, u, w) by (a, 1- z, c, a, w, u) in (5 . 9) gives
(5.10). This is again the symmetry of our problem. Hence it suffices to

prove existence and unicity for the Cauchy problem (5.9).
As the function f is C1 on the open set Q = ]0, + oo [ X ]0, + oo [, it is a

standard result on Cauchy problems that (5.9) has a unique solution (a, c)
defined on a maximal interval I + which is either I + _ [z*, 1] or 1+ = [z*, z +] ]
for some z + E ]z*, 1]. In the first case, we are done. In the second case, it

is a property of maximal solutions that (a (z), c (z)) -~ aS~ when z -~ z + ,
which means that for any compact C in Q, there exist ~>0 such that
z + - E  z  z + implies (a (z), c (z)) ~ C . This case will be eliminated by a
corollary to the lemma below:

LEMMA 2. - Let zl and z2 be two points in I+. Let y and cp be two

functions defined on interval I1,2 = z2[. Assume that cp is continuous and

y is C1, and that 

Then, all zei. 2 one has

all z~I1,2 and z2z1, one has

In any of these two cases, one has that y is strictly decreasing on ]zl, z2[.
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COROLLARY 3. - A solution (a, c) of (5 . 9) defined on [z*, z + [ cannot
satisfy (a (z), c (z)) --~ aSZ when z --~ z + . Hence, I + _ [z*, 1 ] .

Proof. - It is clear using the lemma that for all z, (a (z), c (z)) remains in
the set C = [u (z+)/v, u (z*)/v] X [w (z*)/v, w (z+)/v] which is a compact set
in Q.

Q.E.D.

COROLLARY 4. - The unique solution of equations (5. 2) to (5. 7) satisfies
(5 . 1 ) and (5 . 8).

Proof. - It suffices to use the inequalities provided by the lemma.
Q.E.D.

Proof of the lemma. - We assume z2 > zl 1 (the proof in the other case
is exactly the same).

Let us first suppose that u is C~. Define by y (z 1 ) = 0 and
~y’ (z) _ - v/cp (z), and by x (z) _ ( y (z) - u (z)/v) e’’ ~Z~. Using the
differential equation satisfied by y, we get x (zl) = 0 and

As u’  o, this gives x’ > 0 which implies x (z) > x (zl) = 0 for We
also have

Hence y is strictly decreasing and for 

If u is not C~ 1 but only continuous and strictly decreasing, we can do
the same computation using the weak derivative on I 1, 2, and we get (5 . 11 )
in the weak sense. Since u is strictly decreasing, we get Supp u’ = I1,2 and
because of (5 . 11 ), we have for the positive measure x that 
This implies Because of (5.12), we have y’  0 on z2[.

Q.E.D.
This achieves the proof of proposition 5.
We now give a monotony result in the balanced case.

PROPOSITION 6. - Let (ul, VI) and (u2, V2) be two balanced pairs such
that and VI >_ v2. Let (a1’ b1) and (a2, b2) be the unique solutions of
(5 . 1) to (5 . 7) with respectively (u, v) = (ul, vl) and (u, v) = (u2, v2). Then
a1 >_ a2 and b1 >_ b2.

Proof of the proposition. - It is sufficient to prove the result in the two

special cases (ul = u2, VI >_ v2) and (ul >__ u2, VI = v2). Let n > 0 be an integer
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and (uk, Vk)k E o,..., 2" the finite sequence of functions

As (a, P, ui , VI) and (a, P, u2, v2) are balanced, there exists E > 0 such that

Hence, for all k E ~ 0, ...,~-1 },

which in turn leads to 1 (o) > ~ v2k + 1 ( 1 ) if

Also

Moreover,

Hence (a, P, uk, vk) is balanced for all ..., 2 n ~ if n is big enough.
It suffices to compare the solution to (R) for et (uk + 1, vk + 1 ) with
k=o, ..., 2n- l.
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Also the symmetry of the system (5.1) to (5 . 7) implies that each of the
special case reduces to the other one. So, in the proof, we will suppose
that u2 and v = v2 = v.
We now introduce the auxiliary functions 

c2(z)=b2(I-z) and With these notations, the system
becomes, with i =1,2.

with

and

Recall that z* is the switch point related to the balanced pair (ui, v), i. e.
OC Ui W (Z*).
The following lemma will be very useful:

LEMMA 3. - If u2 and vl = v2, then

Proof. - Suppose Take From the definition of the
switch point, we get which contradicts 
Hence (5 .13) is proved.
As w is increasing, we have w (zi ) >_ w (z2). Hence we get

which gives (5.14).
As al and a2 are decreasing, (5.13) implies

Also

Hence (5.15).
From (5 . 8) it follows that for all v ci (z) >__ w (z), and for all z >__ z2,

v c2 (z) ~ w (z). Hence, we get (5.16) and (5.17).
Q.E.D.

We have to prove that inequalities and hold on [0, 1].
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We will split the interval (and the proof) in the three pieces [0, 

Proof. - Since a 1 and a2 are decreasing, we have for all z i ]
that and a2 (z) _ a2 (z2 ) . This, together with 
gives the result.

Q.E.D.

Proof. - Since the system becomes on [zi, 1]:

with

Hence the function C ~ g2 (z, A, C) is increasing for all z E [zi, 1 ] and A
such that u2 (z) - v A  0, while the function A H h (z, A, C) is increasing
for all zE[zi, 1] ] and C such that w(z)-vc>O.
We let ( . ) + denote max (., 0), and set

x is CB and from lemma 4, we have that We want to show

that x = 0 on [zi, 1].
We define a and c by

Since c >_ c2, we get

Hence, we obtain

We now choose E small enough so and 

for i = 1,2 and all 1], and we define
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Hence, we have

and we get

This gives us

Doing the same computation on cl, c2 and g2, we get

Hence, we have, with R" = Sup {R, R’ ~,

Since x (z i ) = o, Gronwall’s lemma gives us x (z) = 0 for all 1].
Q.E.D.

Proof. - On [0, the system becomes:

with

The same arguments as in the proof of lemma 5 establish the result.
Q.E.D.

The proof of proposition 6 is now complete, and the map F is well
defined in the balanced case.

5.2. The general case

Using propositions 5 and 6, we are able to make the proof of theorem 2
by an approximation procedure.
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Given two constants e>O and we define the function

~e, d ~ ~~~ 1 ~ ~ R + bY

For any u in E, we define ue, d = u + a. From e > 0 and d > 1, we see that

ue, d is in E.

LEMMA 7. - For any pair (u, v) E E X E, and for d and e such that d> 1
and e > max ~ u ( 1 ), v ( 1 ) ~ the pair ~, ue, d) E E X E is balanced.

Proof. - We clearly have that and which

gives the result. 
’

Q.E.D.

PROPOSITION 7. - If e > sup { Zl ( 1 ), v (1)}03B2/03B1 and

then bn) converges (at least) pointwise to a (resp. b) where

(a, b) E E X E is the unique solution of system (R).

COROLLARY 5. - The map (u, v) f--~ F (a, P, v, u, v) is increasing from
E x E into itself.
Proof. - This may be checked by using proposition 6 applied to

n, ve~ n) and by taking the limit when n - oo .
Q.E.D.

Proof of the proposition. - Lemma 7 implies that for all n, the pair
(ue, n, ve, n) is balanced. It follows from the monotony of F, that since the
sequence n H (ue, n, ve~ n) is decreasing (this can be easily checked), the

sequence n H (an, bn) is also decreasing. Also, for all n, the functions an
and bn are positive. Hence, the sequence (an, bn) converges pointwise to a
pair (a, b).
We set we, n (z) = ve, n ( 1- z), w (z) = v (1- z), cn (z) = bn ( 1- z) . Recall that

zn E ]0, 1 [ is the switch point associated to n, ve, n). For all n EN, (an, b~)
is the unique solution in E x E of:
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It follows from the definition of zn that z: -+ z* when n --~ oo .

Proposition 5 implies that

Also.

Since u and w are strictly positive and continuous, this implies the existence
of E > 0 such that for all n and ze[0, 1], and 

Moreover, f is bounded on [E, I/E] X [E, I/E] by strictly positive constants.
Hence, from equations (5 . 21 ) and (5 . 22), we have that ] and are
bounded on [0, 1] ] by constants that are independent of n, which gives
that an and c" are Lipschitz on [zo, zi] uniformly in n. This provides the
following lemma:

LEMMA 8. - The convergence of (an, cn) to (a, c) is uniform on [zo, zl].

Proof. - an and cn are uniformly Lipschitz and bounded on [0, 1], and
converge pointwise to resp. a and c. From Ascoli’s theorem, we have that

, the sequences an and cn are compact with respect to the L~ norm. Hence,
the convergence is uniform.

Q.E.D.

Similarly, the convergence is uniform on [zo, zi] ] for every zo and z 1
such that z0z1  z*.

LEMMA 9. - If z* E ]0, 1 [, then

Proof. - In the first case, since zn -~ z*, we may take E > 0 such that
1- E] for n big enough. For n big enough, we have that ue, n = u

on [E, 1- E]. Hence ue, n {Zn ) -~ u {Z*) and we, n {zn ) -> w {Z*).
Because of the uniform convergence of an and c~, we also have

an {Zn ) - a {Z * ) and c~ {Zn ) --~ C (z*).
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The result in the second and in the third case are obtained by the fact
that we, n = w on [0, 1- E] (resp. on [E, 1]) for n big enough and by
the same argument of uniform convergence.

Q.E.D.
We now take zo and z~ 1 such that For n big enough, we

have z,*  zo.

LEMMA 10. - The functions a and care C1 on [zo, zl] and satisfy

on [zo, z 1 ] .
Proof . - For n big enough and all z E [zo, we have, since zn  Zo,

Since and on [zo, zi] uniformly in n, we have that
and on [zo, Since f is Lipschitz on [E, 1 /~]2, and

because of the uniform convergence of (an, cn) to (a, c) on [zo, zj, we can
take the limit in (5 . 23), and we obtain

The uniform convergence of the continuous functions an and c~ implies
that a and c are continuous on [zo, zl]. Hence (5.24) implies that a and c
are C1 on [zo, zj.

Q.E.D.

Using the same, we may extend the result for every zo and Z1 such that
z0z1  z*. Hence, a and care C1 on [0, z*[~]z*, 1]. Lemma 9 implies
that a and c are in fact continuous on [0, 1]. Equation (5 . 24) then implies
that a and c are C~ on [0, 1].
The proof of the proposition will now be achieved by the following

lemma:

LEMMA 11. - a (resp. c) is strictly decreasing (resp. increasing) on [0, 1].

Proof. - We will establish the result concerning a. The proof of the
result on c is exactly the same. Because of the convergence of an to a, and
since for all n an is strictly decreasing, we have that a is decreasing.
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Suppose that a is not strictly decreasing. Then there exist zo and z 1 with
z0z1 such that a (zo) = a (z 1). a is then constant on [zo, z 1]. Hence, even
if z* e [zo, there exist z2 and z3 such that for instance z*  z2  z3 and
a (z2) = a (z3). We also have

and since f > 0, this implies a (z) = u (z)/v for all z~]. But u is strictly
decreasing and this provides a contradiction.

Q.E.D.

Using the inequalities of (5 . 8) and the convergence, we get

These inequalities will be useful in section 6

6. SUB AND SUPERSOLUTIONS

This section provides the proofs of propositions 2 to 3.

6.1. A supersolution

The proof of proposition 2 will be provided by the two following
lemmas:

LEMMA 12. - For any y > 0, there exist a function A E C 1 ([0, 1]) such
that

and

B / . B /

PYOO, f : - Set A (o) = x and y (x) = A (z)/x. The problem is equivalent to
find a function yx E E such that

and Since (6.1) is a standard Cauchy Problem and since
is locally Lipschitz on ]0, + oo [, there is a unique solution on
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a maximal interval Ix which is either [0, 1] or [0, zx [ for some zx  1. On

]0, + oo [, we can define a strictly increasing and C~ function h by

h has an inverse function h -1 ~ which is also strictly increasing and C 1.
On we have yx (z) = h -1 (-  xz). Since s - g (s) is decreasing, we have

that (s)/s ds is divergent in the neighborhood of 0. Hence h (y) -4 - 00

when y - 0. Moreover h (1) = 0, and 
1 which

implies that for all ze[0, 1 ], Hence Ix = [o, 1 ] . Thus
and in particular x H yx ( 1 ) is continuous, strictly

decreasing, and lim yx ( 1 ) = lim h -1 (~ x) = 0. This implies that there

exist a unique Xy>O for which we Moreover, x03B3 is

characterized by x,~ _ - h ( 1 /y)/~,. 
’~

LEMMA 13. - Take A defined as in lemma 12 with 

and let all j E J. Then a=(aj) is a supersolution.
Proof. - Since we need to show that Fix j E J.

Then a _ ~) = F (a~, rJ.- j’ ~,~ + ~, u~, u _ 1 ) with

and

Since y ~ a _ and y >__ J,

and

Hence, the pair Uj) is balanced. Set u (z) = u~ (z), w (z) = u~ ( 1- z),
a (z) = a~ (z), c (z) = a _ ~ ( 1- z) and v = ~,~ + ~,. Let z* be the switch point
associated to (u, u). Hence z*e]0, 1 [. From (5 . 8), we have on [0, z*] that

On [z*, I], (a, c) satisfies
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The inequalities of (5 . 8) give

Hence, since c H g (a/c)/c is increasing, we get

Moreover, we have

It is then easy to see that a {z) __ A (z)
on [z*, 1]: by continuity, we have a (z) __ A (z) in the neighborhood of z*.
We set z + = inf ~ z, a {z) >_ A (z) ~ . If z +  1, we have a (z + ) = A (z + ), and

Hence, there exists z > z + such that a (z)  A (z), which contradicts the
definition of z + . This implies z + == 1 and a (z)  A (z) on [z*, 1 ] .

Q.E.D.

6.2. A Subsolution

Recall that p > 1, K is a w-subset such that p = p (K) and B is a positive
eigenvector of 8 = 8 (K) associated to the eigenvalue p.

Because of the definition of B, and since p > 1, we have

that is

For jE(-K), B~ is defined by For E small enough, E B
would be a subsolution, i. e. E B ~ H ° G (E B). But for all j, B~ is constant
and E B is not in E’. Hence, we introduce with 
and show that there exist E and 11 such that E Bll is a subsolution in E’.

It is clear that for 11 small enough, ~3~ E E’.
Define ull E EJ by
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We write for the switch point associated to the pair u’~ ~). DefineA~ by

and A~ continuously prolonged Also set = (E 
LEMMA 14. - There exists b > 0 such for ~ sufficiently small,

Proof. - The strict inequality (6. 2) implies the existence of ~* > 0 such
that

It is then clear that for ~ > 0 sufficiently small, we have

From the definition of this implies

To prove lemma 14, take first j E K. If z  then

we obtain the same inequality by continuity. Take now j E (- K).
If z  then

- 

.....i , J .

If z = we obtain the same inequality by continuity.
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Since J is finite, we may take for b

LEMMA 15. - For E and r~ sufficiently small, we have

Proof. - Fix ~ and E. Take j E J. The problem will be separated in the
two cases z E [0, (if > 0) and z E 1] ] (if  1).
On [0, since is a solution of system (S) for (u J , we have

We also have u~ (z)/(~,~ + ~,) = A~ (z) and

Hence,

(since if > o). The inequalities of (5 . 25) imply

This implies (since aH- f(a, b) is decreasing and bH- f(a. b) is increasing)
that

Hence, for all z in 1],
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It is clear from the definition of u’~ that

with R~ a strictly positive constant independent of 11. Hence, we get
0 _ - B~~ ~ (z) ~ R~. E2, which implies

To achieve the proof, we have to choose E and 11. Since J is finite, we
may take E small enough in order to get for all je J. We then
take 11 small enough to get (r~/~) ~ ~,3, k  ~/2.

kEJ

Q.E.D.

We then have >_ B’~ + S/2 which establishes proposition 3.

7. THE CONVERGENCE OF THE FIXED POINT ALGORITHM

In this section, we give the proof of proposition 4.
We recall that the sequences (an) and (an) are defined by

and that a and a are respectively a subsolution and a supersolution with
a___a.

we have a 1 >__ a° . By induction, we get for all

n E N, an + 1 >_ a. Also by induction, we get an + 1  an and an __ a~‘. Hence, we
have for all n that a° _ an _ an _ a°, and there exists 6 > 0 such that for all
nEN, for alljEJ, for all ZE[O, 1 ],

Since the sequences (ft) and (an) are respectively increasing and decreasing,
this implies that an and an converge pointwise to a* and a*. From the
bounds 8 and 1 /~, we get that a* and a* are strictly positive. From an and
an strictly decreasing for all n, we get that a* and a* are decreasing.
We want to show that a* and a* are in E and are fixed points of

H°G. The proof will be done for a*, and is similar for a*.

LEMMA 16. - an converges uniformly to a* on [0, 1], and a* is continuous
on [0, 1].
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Proof. - Fix j E J. We denote by the switch point associated to the
pair For all n E N, the pair a"_~) is the solution of system
(R) with z*=zjn, and

kEJ

v = ~ ~, _ J, k an J 1. For all nand j, gj is bounded by b and 1 /~. Since f is
kEJ

C 1, we have that an ~) is bounded by strictly positive constants.
Hence, from equations (4. 2) and (4. 3), we get that a~’ and are

bounded independently of n. This implies that an is Lipschitz on [0, 1]
uniformly in n. This and the pointwise convergence implies, from Ascoli’s
theorem, that the convergence of a" to a* is uniform on [0, 1]. Since for
all n is continuous, we have from the uniform convergence that a*
is continuous.

Q.E.D.
From the convergence of an to a*, we have that for all j~J, a*j is

decreasing. We need to prove that in fact is strictly decreasing.
LEMMA 17. - For all j E J, a*j is strictly decreasing.
Proof. - The proof will be by contradiction. Suppose that for some

jEJ, gj is not strictly decreasing. Then there exists some zl and z2 with
0~z1  z2 --1 such that a*j is constant on For all nEN and ZErO, 1],
we have that a J‘’ (z)  o. Hence,

which means that the restriction of anj on [Z1’ zj converges (strongly) to 0
in L~ ([z~, z 2]). Also we have

where is bounded by strictly positive constants. From the above conver-
gence of aJ’ to 0 and from the uniform convergence of an to a*, we obtain
that for all zejzi, z2],

which implies (recall a* is continuous) that

is continuous on [zi, z2]. Since for all k~J, a*k is
kEJ

continuous and decreasing, this implies that a,* is constant on z~] for
all k E J such that ~.~, k ~ 0.
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By induction, we get that ak is constant on z~] for all k E K the
strictly connected component of j, i. e.

Note that for all k E K, K is also the strictly connected component of - k.
Hence, by induction on the above equality, we get that for all k E K,

where At denotes the value of gt on This may be rewritten has
A*=LA* where and L=(lk,h,kEK, hEK) is a

# K x # K square matrix with = ~~, + This matrix has positive
coefficient and £ lk, h  1 for all k E K. Hence, it is a contraction, so that

hEK

A* = LA* implies A* = 0 which contradicts ak > 0.
Q.E.D.

Since gj is continuous and stricly decreasing for all j E J, the switch
point zj associated to the pair a*_~) is well defined.
LEMMA 18. - For all j E J, z*n -~ z* oo .

LEMMA 19. - For all j E J, the pair (a*, a*_~) satisfies the boundary
conditions (4. 6) to (4. 8), that is:

Proof. - For all n e N, we have

Since zjn - zj and an converges uniformly to a* when n --~ oo, we get the
result.

Q.E.D.
It is only left to show that a* is C1 and satisfies the right differential

equations.
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LEMMA 20. - For all j EJ, (a*, a* J) is C and satisfies on [0, 1]:

with

Proof - For all n e N; we have

with

From - zj and from the uniform convergence of an to a* when n --~ oo,
we get that cp~ converges uniformly to cp~ on [0, 1].

Writing the differential system on an on its integral form, we may take
the limit because of the uniform convergence of all the functions to their
limits. This gives us, on a*j for instance,

The continuity of on [0, z* [U] 1 ], and the continuity of a* on [0, 1] ]
imply that a J is C1 on [0, z* [U] z*, 1 ]. Hence, we may derive the above
equation on [0, zj 1], which gives us the desired system. The second
one may be obtained in the same way. In the case 1[, from the
boundary condition when the right member of the equation satisfied
by a*j is continuous with value 0 at this point, and we get that a*’ is
continuous with value 0 at this point.

Q.E.D.
Hence, a* belongs to EJ and is a fixed point of H ° G. This achieves the

proof of proposition 4.
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8. COMPLEMENTARY RESULTS IN THE CASE N =1

This section provides complementary results in the case where

J= ~ - l, 1 ~. We first introduce some notation adapted to this special
case.

We set and we suppose (without loss of generality) that
a1/2_~3. We also set ~,=~._1,1=~1,-1, v=~+~, and We
have v > ~,. 

Finally, we set A = a _ 1 and B = a 1. We will establish in this two states
case that the switch point z* is always 0, which is the meaning of the
following proposition:

PROPOSITION 8. - In the two states case, the solution (A, B) of system
(S) is the solution of the following problem:

and the two boundary relations

Proof - Set ze]0, 1 [. Since (A, B) are solutions of system (S), and
since A’ (z)  0, B’ (z)  0, one of the following two sets of equations must
hold:

or

Suppose (8 . 6) holds for z near 1. Then B (z) > A (z), and since

we would have a contradiction. Thus, for z near 1, (8. 5) must hold.

Let r=~(A, and r={(A, rand
I~’ are closed with r U f = (0, 0) and (A (z), B (z)) E F U r for each z E [0, 1].
For z near 1, we have (A (z), B (z)) E I-’, and for all ze[0, 1], we have
(A (z), B (z)) ~ (0, 0). Also A and B are continuous. Hence, we must have
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(A (z), B(z))er for all ze[0, 1]. From (3 . 5) and (3 . 6), we obtain the
boundary conditions.

Q.E.D.
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