@article{AIHPC_1991__8_2_119_0, author = {Bauman, Patricia and Owen, Nicholas C. and Phillips, Daniel}, title = {Maximum principles and a priori estimates for a class of problems from nonlinear elasticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {119--157}, publisher = {Gauthier-Villars}, volume = {8}, number = {2}, year = {1991}, mrnumber = {1096601}, zbl = {0733.35015}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1991__8_2_119_0/} }
TY - JOUR AU - Bauman, Patricia AU - Owen, Nicholas C. AU - Phillips, Daniel TI - Maximum principles and a priori estimates for a class of problems from nonlinear elasticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 1991 SP - 119 EP - 157 VL - 8 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1991__8_2_119_0/ LA - en ID - AIHPC_1991__8_2_119_0 ER -
%0 Journal Article %A Bauman, Patricia %A Owen, Nicholas C. %A Phillips, Daniel %T Maximum principles and a priori estimates for a class of problems from nonlinear elasticity %J Annales de l'I.H.P. Analyse non linéaire %D 1991 %P 119-157 %V 8 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1991__8_2_119_0/ %G en %F AIHPC_1991__8_2_119_0
Bauman, Patricia; Owen, Nicholas C.; Phillips, Daniel. Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 2, pp. 119-157. http://www.numdam.org/item/AIHPC_1991__8_2_119_0/
[1] Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 63, 1977, pp. 337-403. | MR | Zbl
,[2] Minimizers and the Euler-Lagrange Equations, Proc. of I.S.I.M.M. Conf., Paris, Springer-Verlag, 1983. | MR
,[3] W1,p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., vol. 58, 1984, pp. 225-253. | MR | Zbl
and ,[4] Quasiconvexity and Partial Regularity in the Calculus of Variations, Arch Rational Mech. Anal., vol. 95, 1986, pp. 227-252. | MR | Zbl
,Blow-up, Compactness and Partial Regularity in the Calculus of Variations, Indiana U. Math. J., vol. 36, 1987, pp. 361-371. | MR | Zbl
and ,[6] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. | MR | Zbl
,[7] Cartesian Currents, Weak Diffeomorphisms and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal., vol. 106, 1989, pp. 97-159. | MR | Zbl
, and ,[8] Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, 1983. | MR | Zbl
and ,[9] Local Estimates for Subsolutions and Supersolutions of General Second Order Elliptic Quasilinear Equations, Invent. Math., vol. 61, 1980, pp. 67-79. | MR | Zbl
,