@article{AIHPC_1990__7_4_287_0, author = {Wysocki, K.}, title = {Multiple critical points for variational problems on partially ordered {Hilbert} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {287--304}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1990}, mrnumber = {1067777}, zbl = {0709.58013}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1990__7_4_287_0/} }
TY - JOUR AU - Wysocki, K. TI - Multiple critical points for variational problems on partially ordered Hilbert spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 287 EP - 304 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1990__7_4_287_0/ LA - en ID - AIHPC_1990__7_4_287_0 ER -
Wysocki, K. Multiple critical points for variational problems on partially ordered Hilbert spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 287-304. http://www.numdam.org/item/AIHPC_1990__7_4_287_0/
[1] Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Rev., t. 18, 1976, p. 620-709. | MR | Zbl
,[2] Stable transition layers in similinear boundary value problem. J. Diff. Eq., t. 62, 1986, p. 427-442.
, , ,[3] Lectures on Morse theory, old and new. Bull. Am. Math. Soc., t. 7, 1982, p. 331-358. | MR | Zbl
,[4] Multiple fixed points of positive mappings. J. Reine aug. Math., t. 371, 1986, p. 46-66. | MR | Zbl
,[5] Ordinary Differential Equations in Banach Spaces. Lect. Notes Math., vol. 596, Springer 1977. | MR | Zbl
,[6] Variational and topological methods in partially ordered Hilbert spaces. Math. Ann., t. 261, 1982, p. 493-514. | MR | Zbl
,[7] The topological degree at a critical point of moutain-pass type. Proceedings of Symposia in Pure Mathematics, vol. 45, 1986, p. 501-509. | MR | Zbl
,[8] Metodi perturbativi nella teoria di Morse. Boll. Un. Math. Ital., Suppl., 3, 1975, p. 1-32. | MR | Zbl
, ,