Variational problems with lipschitzian minimizers
Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 185-209.
@article{AIHPC_1989__S6__185_0,
     author = {Clarke, F. H. and Loewen, P. D.},
     title = {Variational problems with lipschitzian minimizers},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {185--209},
     publisher = {Gauthier-Villars},
     volume = {S6},
     year = {1989},
     mrnumber = {1019114},
     zbl = {0677.49006},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1989__S6__185_0/}
}
TY  - JOUR
AU  - Clarke, F. H.
AU  - Loewen, P. D.
TI  - Variational problems with lipschitzian minimizers
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1989
SP  - 185
EP  - 209
VL  - S6
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1989__S6__185_0/
LA  - en
ID  - AIHPC_1989__S6__185_0
ER  - 
%0 Journal Article
%A Clarke, F. H.
%A Loewen, P. D.
%T Variational problems with lipschitzian minimizers
%J Annales de l'I.H.P. Analyse non linéaire
%D 1989
%P 185-209
%V S6
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1989__S6__185_0/
%G en
%F AIHPC_1989__S6__185_0
Clarke, F. H.; Loewen, P. D. Variational problems with lipschitzian minimizers. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 185-209. http://www.numdam.org/item/AIHPC_1989__S6__185_0/

[1] L. Cesari, Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR | Zbl

[2] F.H. Clarke, The Euler-Lagrange differential inclusion. J. Diff. Equations 19(1975), pp. 80-90. | MR | Zbl

[3] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley Interscience, New York, 1983. | MR | Zbl

[4] F.H. Clarke, Hamiltonian analysis of the generalized problem of Bolza. Trans. AMS 301 (1987), pp. 385-400. | MR | Zbl

[5] F.H. Clarke and P.D. Loewen, An intermediate existence theory in the calculus of variations. Technical report CRM-1418, C. R. M., Univ. de Montreal, C. P. 6128- A, Montreal, Canada, H3C 3J7.

[6] F.H. Clarke and R.B. Vinter, On the conditions under which the Euler equation or the maximum principle hold. Appl. Math. Optim. 12 (1984), pp. 73-79. | MR | Zbl

[7] F.H. Clarke and R.B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Amer. Math. Soc. 289 (1985), pp. 73-98. | MR | Zbl

[8] F.H. Clarke and R.B. Vinter, Existence and regularity in the small in the calculus of variations. J. Diff. Equations 59 (1985), pp. 336-354. | MR | Zbl

[9] L. Tonelli, Sure une méthode directe du calcul des variations. Rend. Circ. Mat. Palermo 39(1915), pp. 233-264; also in Opere Scelte (vol. 2), Cremonese, Rome, 1961. | JFM

[10] L. Tonelli, Fondamenti di Calcolo delle Variazioni (2 vols.). Zanichelli, Bologna, 1921, 1923. | JFM