@article{AIHPC_1989__6_6_481_0, author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}}, title = {The {Stefan} problem in heterogeneous media}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {481--501}, publisher = {Gauthier-Villars}, volume = {6}, number = {6}, year = {1989}, mrnumber = {1035339}, zbl = {0706.35139}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1989__6_6_481_0/} }
Roubíček, Tomáš. The Stefan problem in heterogeneous media. Annales de l'I.H.P. Analyse non linéaire, Tome 6 (1989) no. 6, pp. 481-501. http://www.numdam.org/item/AIHPC_1989__6_6_481_0/
[1] On tne Existence of Weak Solutions to an n-Dimensional Stefan Problem with Nonlinear Boundary Conditions, S.I.A.M. J. Math. Anal., Vol. 11, 1980, pp. 632-645. | MR | Zbl
and ,2] The Stefan Problem in Several Space Variables, Trans. Amer. Math. Soc., Vol. 133, 1968, pp. 51-87. | MR | Zbl
,3] On the Stefan Problem (in Russian), Mat. Sb., Vol. 53, 1961, pp. 488-514. | Zbl
,4] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. | MR | Zbl
,5] Semigroup Approach to the Stefan Problem with Nonlinear Flux, Atti Acc. Lincei Rend. fis., S. VIII, Vol. 75, 1983, pp. 24-33. | MR | Zbl
, and ,[6] A Generalized Stefan Problem in Several Space Variables, Appl. Math. Optim., Vol. 9, 1983, pp. 193-224. | MR | Zbl
and ,[7] A Variational Inequality Approach to Generalized Two-Phase Stefan Problem in Several Space Variables, Ann. Matem. Pura et Applicata, Vol. 131, 1982, pp. 333-373. | MR | Zbl
,[8] Optimal Control of a Stefan Problem with State-Space Constraints, Numer. Math., Vol. 50, 1987, pp. 723-744. | MR | Zbl
,[9] Sur le problème de Stefan avec flux non linéaire, Boll. U.M.I.,C-18,1981, pp. 63-86. | MR | Zbl
,