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ABSTRACT. - We prove that a hypersurface of contact type in
has a closed characteristic. A geometric trick is used to

reduce this problem to finding T-periodic solutions of a Hamiltonian
system. This system is studied using the Clarke-Ekeland-Lasry dual action
functional.

On démontre que toute hypersurface de genre contact de
(R2n, 03A3dxi ~ dyi)admet au moins une caractéristique fermée. Une astuce
geometrique ramene notre probleme a la recherche d’orbites T periodiques
d’un systeme hamiltonien. Ce systeme est analyse en utilisant la fonction-
nelle d’action duale de Clarke-Ekeland-Lasry.
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338 C. VITERBO

INTRODUCTION

In his paper "On the hypothesis of Rabinowitz’ periodic orbit theorem"
(denoted by [W. 2] in the sequel) A. Weinstein made the following conjec-
ture.

CONJECTURE. - If E c (M, o) is a compact hypersurface of contact
type in a symplectic manifold, satisfying H 1 ( E; R) =0, then:E has a closed
characteristic.
The definition of being of contact type is given in section one (Defini-

tion 1.1). We recall that a characteristic is a curve everywhere tangent to
the line field ker ~.
As the reader might have hinted from the title, our aim is to prove this

conjecture for ( M, o) = (R2n, 03C90) ( where 03C90 = 03A3 dxl n Thus, we state.

THEOREM. - If E c (R2n, roo) is a compact hypersurface of contact type,
then :E has at least one closed characteristic. D

Let us mention that we dropped the hypothesis I-I1 (E; M)=0; for our
proof we only need that X has an interior in 1R2n, which is automatic.

Recall that if J is the standard symplectic matrix, and N (x) denotes the
outward normal to E at x, then the closed characteristics of X correspond
to periodic solutions of

The standard approach to (%) is to transform it into a fixed period
Hamiltonian system, that is, to find a function H on such that the

non-trivial solutions of

correspond to periodic solutions of (%) (here T is fixed).
Let us recall shortly the historical background. In 1948, Seifert proved

existence of closed characteristics for some special class of convex hypersur-
faces (cf [S]). Thirty years later, Weinstein (cf [W. 1]) extended this result
to general C2 convex hypersurfaces, and Rabinowitz (in [R]) to strictly
starshaped hypersurfaces. Let us mention also the work of Bahri (cf [B. 2]
or a sketchy description in [B. 1]).
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339PROOF OF WEINSTEIN’S CONJECTURE IN 1R2N

Rabinowitz’ idea to construct H is, assuming E is star shaped with
respect to the origin, to set

where cp is some well chosen function.
In chapter one, by a modification of this idea we get a function H such

that non-trivial solutions of yield periodic solutions of (.iV’).
In chapter two, we define the dual action functional, according to an

idea of Clarke and Ekeland (cf. [C-E]) later modified by Berestycki, Lasry,
Mancini and Ruf (cf. [B-L-M-R]).
The finite dimensional reduction seems to be needed in order to prove

the Palais-Smale condition: all the known proofs of the (P.S.) condition
use the fact that V H (z). z ~ a H (z) > 0 for some positive a, that is the level
hypersurfaces of H are strictly starshaped. Let us remark that this condi-
tion is needed whether the direct action functional or the dual one are
used.

Chapter three is concerned with the proof of the (P.S.) condition for
the finite dimensional reduction.

Finally by a cohomological argument, we prove that our functional has
non-trivial critical points, that is done in chapter four.

I am glad to thank Leila Lassoued for interesting discussions during a
stay at the University of Tunis. Francois Laudenbach for introducing me
to symplectic geometry, and for attempting (sometimes unsuccessfully as
it is the case in this paper) to get from me "geometric proofs". Abbas
Bahri for useful comments, Helmut Hofer for reading the manuscript,
finding mistakes, and simplifying the proof (cf [H-Z]).
And of course special thanks to Ivar Ekeland. He introduced me to

Hamiltonian systems. The reader will easily trace his influence in this
work. Let me mention how enj oyable it is to work under his direction.

NOTATIONS
AND STANDARD DEFINITIONS

( . , . ); , . ~ scalar product and norm in euclidean space;
 . , . ~; ~ ( ~ ~ scalar product and norm in L2 space;
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340 C. VITERBO

"strictly convex function": f such that

for some positive E;
"conformal diffeomorphism": cp such that (c a non-zero

constant) H* (A), H* (A): homology group, cohomology ring of A (rational
coefficients) HS1, * (A), HS1 (A): equivariant homology group and cohomol-
ogy ring of A in the sense of Borel (cf [Bo]) (with rational coefficients);

[x] : integer part of x;
D : end of a statement;
o : end of a proof.

1. REDUCTION
TO A HAMILTONIAN S YS TEM IN 1R2n

Let (M2n, co) be a symplectic manifold, E a hypersurface of contact type
of ( M 2", co), that is:

DEFINITION 1. 1. - E is said to be of contact type if and only if there is
a I-form 9 on E such that

(i) M is the inclusion map);
(ii) 8 A is a volume form on E (i. e. does not vanish on E). Q
We now have (cf [W. 2], p. 354, Lemma 2).
LEMMA 1. 2. - E is of contact type if and only if there is a vector field

T~, defined in a neighborhood of E, which is:

Proof. - Consider the form e of Definition 1. By Poincare’s lemma,
we can extend 8 to 9, defined in a neighborhood of X, such that d0 = o.

(11 exists since w is non-degenerate), then 11 (x) is not in 
otherwise we would have r~ ( x) = dj (x) ~, and

which is zero because j* is zero. So ~ is transverse to 03A3.
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341PROOF OF WEINSTEIN’S CONJECTURE IN R2N

Checking (1.4) is straightforward:

From the lemma, we infer:
PROPOSITION 1. 5. - For some positive E, there is a symplectic diffeo-

morphism

where r (resp. t) is the projection of 03A3 x ] 1- E, 1 + E[ on the first (resp.
second) factor, and U is a tubular neighborhood of E in (M, ~).
Moreover tP I ~ x = D

Proof - Write for the flow of r~ defined in Lemma 1. 2, and set

By (1.3), cp is a diffeomorphism provided E is small. To show that it is
symplectic, we shall compare cp* (~) and tr* (9) (the reader is invited to
check that d(tr*(e)) is a symplectic form. Now,

From 0 = i~ m and d = m we infer i~ 0 = 0 and i~ d0 = 0, so ~  03C8*s (0) = 03C8*s 0ls
which implies

Let us write then

The change of variable t = eS yields, using ( 1. 6),

Vol. 4, n° 4-1987.



342 C. VITERBO

Finally, the last assertion of ( 1. 5) is obvious. 0
We now assume the origin to be an interior point of E. Our aim is to

prove.

PROPOSITION 1. 8. - For any a, positive constant, there is a C°° function
H on ~2" satisfying:

(i) H (o) > 0 is the absolute minimum of H, and H is constant in a

neighborhood of the origin.
(ii) H" is bounded.

(iii) for |z| large enough.

(iv) If (~f) has a nonconstant solution, then (~V’) has a periodic orbit.
a

Proof - We construct H explicitly.
Let k > 1 be some sufficiently large number so that U and k. U are

disjoint [U is as in ( 1. 5), k. U is the image of U by a dilation of ratio k].
This implies that the kP. U, for p positive integers, will be pairwise

disjoint.
We first define H on U 

pl

by

where ~, is some increasing function on [ 1- E,1 + E] that shall be defined
more precisely later on.
From ( 1. 9) we can check that in kP. U the level hypersurfaces of H are

the kp (E). Since by (1.7) is a conformal map, and the dilations are
also conformal, the kp 03C8s (E) are conformally diffeomorphic to E. Hence
on U kP . U, (iv) holds.

Also on U kP. U (i) to (iii) hold provided
pz 1

where R is a real number such that U is contained in the ball of radius

R, centered at the origin.
Now let us extend H to where D is the union of U and the

interior of X, and 0 = D - U.
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343PROOF OF WEINSTEIN’S CONJECTURE IN 1R2N

We can assume that H is constant on kA - D provided
k2 ~, (1- E) _ ~, ( 1 + E) which we will assume henceforth.
We then extend H to ~2n - 0 by setting

We finally set H (z) _ ~, ( 1- E) for zeA. It is now easy to check properties
(i) to (iv):

(i) is obvious,
(ii) follows from ( 1.11), for this implies

since H" is continuous, it is bounded on k D - A, hence on ~2".
(iii) follows also from ( 1.11) for it implies

and we can assume ~, ( 1- E) >__ ~ 2 k 2 R 2.
(iv) Consider a non-constant solution, its trajectory has to be contained

in U kP U, thus yielding a periodic solution of (~). 0

2. THE DUAL ACTION FUNCTIONAL
AND ITS FINITE DIMENSIONAL REDUCTION

Let H be a function on such that H" is bounded. Then we can find
some positive real number, K, such that H" + KI is everywhere greater

than s I for some positive E, thus is strictly convex,

and we can consider its dual function in the sense of Fenchel (see [E-T))

which main virtue is to satisfy

Vol. 4, n° 4-1987.
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For ff~"), we define

Assume 
KT 

7~ then x --~ - J x + K x is an Hilbert space isomorphism27T

from W 1 ~ 2 (~2n) to LZ (~2n), whose inverse we denote by MK.
Then critical points of FK are precisely the solutions of (~f).
Our goal is to find critical points of FK, but as we cannot prove that it

satisfies condition (C) of Palais and Smale (to prove that this condition is
satisfied, one usually needs some condition like V H (x). x  y H (x) > 0,
hence the level hypersurfaces of H are starshaped; (cf [B-L-M-R] or [R])
we shall use a finite dimensional reduction of FK that we shall now
describe.

Let us first set for 1R2n), that is

and since MK is an Hilbert space isomorphism, we can as well look for
the critical points of and build a finite dimensional reduction 
The main point is to remark that BjIK is convex in the direction orthogonal

to some finite dimensional vector space: consider

since Ht is strictly convex

Let us mention that what we here denoted by MK is in fact the

composition of MK and the Sobolev compact inclusion from

!R2n) into L2 1R2n) so that, as an endomorphism of
L2, MK is self adjoint and compact. Thus if G is the finite dimensional
subspace of E generated by the eigenvectors of MK, the eigenvalues of

which are greater than £, 2 we get for 
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and ~rK is strictly convex in the direction of Gl (i. e. for any g E G,
h -~ ~rK (g + h), defined on is strictly convex).
We now prove.
PROPOSITION 2. 4. - For any g E G, the function h - 03C8K (g + h) defined

on G1 has a unique minimum: h (g). The map from G to G1 given by
g - h (g) has its image in G1 C W1, 2, and is continuous as a map from G
to C W1, 2.

Set 03C8K(g)=03C8K (g + h (g)). Then 03C8K is a function on G, whose critical

points are in a one to one correspondance with those of 03C8K. m

Remark. - The main feature of 03C8K is that it satisfies condition (C),
that we shall prove in Chapter 3.

Proof - As h ~ 03C8K (g + h) is strictly convex, it has a unique minimum
h (g) satisfying 03C8’K (g + h (g)). h = 0 for any h E Let us first prove that,
as a map from G to h is Lipschitz.
Take gl, g2 E G and set hl = h (gl), h2 = h (g2), then

since h 1- h2 E G1.
But

by (2.4), and

because M is linear (hence Lipschitz) and V H is Lipschitz (because

and H" is bounded).
From ( 2 . 7) we get,

which compared to (2.5) and (2. 6) yields

hence h is Lipschitz of ratio

Vol. 4, n° 4-1987.
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Recall now that h (g) is defined by

that we can write

and Q the orthogonal projection on G~.
We wish to prove that hEW1, 2.
First MKh is in W1,2, hence also. Now for zeL2,

Z-QZEGcW1,2, so if then whence we see that

Since has a bounded differential, it maps WI,2 in W1,2,
is in W1,2, and eventually h is in WI,2.

We finally prove that 03C8 is C1 and that We
shall not prove here that B)/ is C~, since using a pseudo gradient vector
field, C1 is sufficient in order to perform min-max theory.

Let us compute

Since g -~ h (g) is Lipschitz,

and because we see that
ah

Since 03C8K is C1 and g -> h (g) is continuous, this implies that WK is C1. 0

Remark. - We write WK for the finite dimensional reduction of ~rK,
and fK for the corresponding reduction of FK: since MK preserves G and
G1 we set ~K =fK (y).
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3. satisfies condition (C)

The aim of this chapter is to prove
PROPOSITION 3.1. - ~K satisfies condition (C) of Palais and Smale.

Proof - Let be a sequence such that 03C8’K (g") ~ 0 and 03C8K (g") is
bounded. Then if g" is bounded it has a converging subsequence and there
is nothing to prove, so we assume that goes to infinity.

Set u" =gn + h (g"), then I Un Ico -~ + oo since

for some k, and by the same argument, if we set I zn ~~o ~ + oo.
Now by assumption

In terms of z~,, ( 3 . 2) is equivalent to

hence

yielding

Assume that for large values of n, there exists to E such that

Let W c c U defined by

By modifying our choice of the function we can take W to be
contained in an arbitrarily small neighborhood of E x { 1 ~.

Vol. 4, n° 4-1987.



348 C. VITERBO

We now prove that (3.4) implies, for a good choice of E, that

Let us argue by contradiction, and assume that t 1 is the smallest value

of t larger than to such that U kP . V.
p>_1

For n large enough, I E" (t) (  E/2KT, so if

Hence so by (3.3)

and by the mean value theorem

since we should have 
But if E is small enough, d (V, (U) > E, thus

implies

which contradicts our assumption.
Now we prove that if z~ is such that zn (t) ~ U kP. V for all t’s, and

p>_1

I Zn - +00, then FK (zn) is unbounded.
Let us first compute

Using ( 3 . 6)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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thus

_ -- t j

iso, since

for some a‘ > a. (The right hand side inequality follows 
from the bounder

ness of H".)

so

and using ( 3 . 6) again

Eventually

Consider now

for E = 0 this equals - .."’" - - - -- ~ -

this quantity is smaller than - 4(K+a) So the right 
hand side 01 

goes to minus infinity with ))zJ), and FK(zn)=03C8K(un) is not 
bounded.

Vo).4,n°4-)9X7.
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We now see that the only possibility is that z" (t) E U kP. U for all t,
p? 1

hence by a trivial connectedness argument

Set From ( 3 . 3) and !VH(x)! we infer

so w" is bounded in W1,2, hence there is a converging subsequence, still

denoted wn, such that wn --> w in the C° topology.
Let us remark that since w~ (t) E U, w (t) e U for all t’s.
Rewriting (3.3) and using the equation V H (kP z) = kP V H (z) for zeU,

yields

Let n go to infinity, we thus obtain

so w is a solution of such that w (t) E U for all t’s.
Now, let us show that Since if w is a constant in

U, FK (w) is non zero, this will imply that w is a nontrivial solution of

(~).
Obviously,

On the other hand, by ( 3 . 3)

therefore

As before and for n large enough, is in

U since |C0 goes to zero.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus, using ( I . l l), ~

the last equality follows from (3 . 8).

This proves FK(zn)=k2pnFK(wn),since 
wn converges 

strongly to w, we

indeed get FK(zn)~k2pn FK ( w) .

Finally, if w is a constant 
in U, solution of (3f), then 

V H (w) = 0, hence

w, so

and

So if FK(zn) is bounded w is a non constant solution of (3f). O
Remark. - It is easy to see that 

in order that (P.S.) holds, 
we only

need that FK(w) # 0 for all solutions 
w of (9Y) . Now, a computation 

yields

- - I , , , , _ ,~,

and it can be shown 
that if the set of periods of 

dosed characteristics 
oi

£ is discrete, we can 
choose X so that 0 

is not a critical value of FK.

4. PROOF OF THE THEOREM

Now that we proved that fK 
satisfies condition (C) we 

must prove that

it has a non trivial critical point.

Let us first remark that 
if we let S1 = R/TZ act on 

X = W1,2 (R/TZ, R2n)

by

then FK is equivariant, as 
well as fK since g - h(g) 

is equivariant.

Vol. 4, n° 4-1987.
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Now let F be the set of fixed points of X by the S 1 action, that is F is
the set of constant paths. We now prove

PROPOSITION 4 . 1. - There are two S1-invariant vector subspaces of G,

V and W such that V ~ W ~ F and if we denote by S the unit sphere of G,

for a small, 0  y + TH (0)  E, with E small, C large. Moreover
dim V - dim W >-1 for a large enough [a was defined in ( 1. 8)]. Q
Proof - Set

Then since

we have for x E G

so for C large, X - X~ does not meet the negative eigenspace of Q, ~,
that shall be our space V (remark that indeed V c G).
On the other hand, for x in a neighborhood of the origin, we assumed

so that

hence since for small g, is small, near

the origin, where qo, K is obtained from Qo, K in the same way as fK is
obtained from FK.

It is easy to see that qo, K and Qo, K have the same index, and we take
for W the non positive eigenspace of Qo, K.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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An easy computation shows that

whose index is given by

so that

and

(because ker Qo, K = F has dimension 2 n)

COROLLARY 4. 2 :

thus he has a critical level in [y, C] whence a non trivial critical circle. D

Vol. 4, n° 4-1987.
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Proof. - The idea is that if i (A) is the Fadell-Rabinowitz cohomological
index of A (cf. [F-R]), then by (ii) V; on the other
hand by ( i) f ( G - GY) >_ coding W so that

Hsl (G - GB G - G~) 5~ 0 for all q in ]codimG V, codimG W].

To be more precise, there are maps

since as proved at the end of chapter 3, F c GY

as the map is surjective for * _ dim W1,
HS1 (G - G’~) - HS1 (a S n Wl) will also be surjective.
On the other hand there is a homotopy commutative diagram

where 1t is the orthogonal projection on V~ and "homotopy commutative"
means that the inclusion of G - G~ in G - ~ 0 ~ is homotopic to 1t composed
with the inclusion of in G - ~ 0 ~; the homotopy being given by

Thus there is a commutative diagram

as

so

is zero in these dimensions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Finally let us write the cohomology sequences of the pairs (G - G’~,
G - G~; (G - F, G - F) and the map between these sequences induced by
the inclusion

y is zero for * >- dim ~i is non zero for any * _ dim So let
where dim Wl such that As

Y (y) = o, is in the image of a hence

Remark. - An analogous statement is proved in [B - L - M - R] with
some notion of genus instead of equivariant cohomology.
We can now conclude the proof of our theorem:
By corollary 4. 2 fK has at least one critical value in [y, C]. Thus FK ha

a critical value, also in [y, C] since the critical values of fK and FK coincide.
Since y > - TH (o), the critical orbit thus found is non trivial. According
to proposition 1. 8, this yields a periodic orbit of (.~V’). 0
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