@article{AIHPC_1987__4_4_307_0, author = {Ekeland, I. and Lassoued, L.}, title = {Multiplicit\'e des trajectoires ferm\'ees de syst\`emes hamiltoniens connexes}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {307--335}, publisher = {Gauthier-Villars}, volume = {4}, number = {4}, year = {1987}, mrnumber = {917740}, zbl = {0633.58034}, language = {fr}, url = {http://www.numdam.org/item/AIHPC_1987__4_4_307_0/} }
TY - JOUR AU - Ekeland, I. AU - Lassoued, L. TI - Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes JO - Annales de l'I.H.P. Analyse non linéaire PY - 1987 SP - 307 EP - 335 VL - 4 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1987__4_4_307_0/ LA - fr ID - AIHPC_1987__4_4_307_0 ER -
%0 Journal Article %A Ekeland, I. %A Lassoued, L. %T Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes %J Annales de l'I.H.P. Analyse non linéaire %D 1987 %P 307-335 %V 4 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1987__4_4_307_0/ %G fr %F AIHPC_1987__4_4_307_0
Ekeland, I.; Lassoued, L. Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes. Annales de l'I.H.P. Analyse non linéaire, Tome 4 (1987) no. 4, pp. 307-335. http://www.numdam.org/item/AIHPC_1987__4_4_307_0/
[1] Periodiche Bewegungen mekanischer Systemen, Math. Zeit., vol. 51, 1948, p. 197-216. | EuDML | MR | Zbl
,[2] Periodic orbits for convex Hamiltonian systems, Ann. of Math., vol. 108, 1078, p. 507-518. | MR | Zbl
,[3] Periodic solutions to Hamiltonian inclusions, J. Diff. Equ., vol. 40, 1981, p. 1-6. | MR | Zbl
,[4] Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., vol. 31, 1978, p. 36-68. | MR | Zbl
,[5] Une théorie de Morse pour les systèmes hamiltoniens convexes, Annales I.H.P., Analyse non linéaire, vol. 1, 1984, p. 19-78. | EuDML | Numdam | MR | Zbl
,[6] Normal modes for non linear Hamiltonian systems, Inv. Math., vol. 20, 1973, p. 47-57. | EuDML | MR | Zbl
,[7] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., vol. 12, 1980, p. 283-319. | MR | Zbl
et ,[8] Existence of multiple periodic orbits on star-shaped Hamiltonians surfaces, Comm. Pure. Appl. Math., vol. 38, 1985, p. 252-290. | MR | Zbl
, , et ,[9] An index theory for periodic solutions of convex Hamiltonian systems, Nonlinear functional analysis and its applications, F. Browder ed., Proceedings of Symposia in Pure Math., 45, 1986, p. 395-423. | MR | Zbl
,[10] Linear Differential Equations with Periodic Coefficients, Halsdedt Press, Wiley, 1980.
et ,[11] Indice des points critiques obtenus par minimaux (à paraître).
,[12] Un flot hamiltonien a au moins deux trajectoires fermées sur toute surface d'énergie convexe et bornée, C.R. Acad. Sc., t. 301, série I, 1985, p. 162-164 | MR | Zbl
et ,[13] Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Diff. Eq., vol. 33, 1979, p. 336-352. | MR | Zbl
,[14] Exixtence of periodic motions of conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1983. | MR | Zbl
,[15] Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., vol. 6, 1983. | MR | Zbl
,[16] Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré, Analyse non linéaire, 1, 1984, p. 401-411. | EuDML | Numdam | MR | Zbl
,[17] Communication personnelle, décembre 1985.
,