On the dynamics of Bose-Einstein condensation
Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 6, pp. 413-451.
@article{AIHPC_1984__1_6_413_0,
     author = {Buffet, E. and de Smedt, Ph. and Pul\`e, J. V.},
     title = {On the dynamics of {Bose-Einstein} condensation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {413--451},
     publisher = {Gauthier-Villars},
     volume = {1},
     number = {6},
     year = {1984},
     mrnumber = {778978},
     zbl = {0568.45006},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1984__1_6_413_0/}
}
TY  - JOUR
AU  - Buffet, E.
AU  - de Smedt, Ph.
AU  - Pulè, J. V.
TI  - On the dynamics of Bose-Einstein condensation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1984
SP  - 413
EP  - 451
VL  - 1
IS  - 6
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1984__1_6_413_0/
LA  - en
ID  - AIHPC_1984__1_6_413_0
ER  - 
%0 Journal Article
%A Buffet, E.
%A de Smedt, Ph.
%A Pulè, J. V.
%T On the dynamics of Bose-Einstein condensation
%J Annales de l'I.H.P. Analyse non linéaire
%D 1984
%P 413-451
%V 1
%N 6
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1984__1_6_413_0/
%G en
%F AIHPC_1984__1_6_413_0
Buffet, E.; de Smedt, Ph.; Pulè, J. V. On the dynamics of Bose-Einstein condensation. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 6, pp. 413-451. http://www.numdam.org/item/AIHPC_1984__1_6_413_0/

[1] E. Buffet, Ph. De Smedt and J.V. Pule, On the dynamics of the open Bose gas. Ann. Phys. (N. Y.), t. 155, 1984, p. 269. | MR | Zbl

[2] L. Arkeryd, On the Boltzmann equation ; Part I: existence. Arch. Rat. Mechs. Anal., t. 45, 1972, p. 1. | MR | Zbl

[3] L. Arkeryd, On the Boltzmann equation ; Part II: the full initial value problem. Arch. Rat. Mechs. Anal., t. 45, 1972, p. 17. | MR | Zbl

[4] M. Aizenman and T.A. Bak, Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys., t. 65, 1979, p. 203. | MR | Zbl

[5] W.G. Sullivan, The L2-spectral gap of certain positive recurrent Markov chains and jump processes. Z. Warscheinlichkeitstheorie (in press). | Zbl

[6] R. Alicki and J. Messer, Nonlinear quantum dynamical semi-groups for many-body open systems. J. Stat. Phys., t. 32, 1983, p. 299. | MR | Zbl

[7] E.B. Davies, Markovian master equations. Comm. Math. Phys., t. 39, 1974, p. 91. | MR | Zbl

[8] E.B. Davies, Markovian master equations II. Math. Ann., t. 219, 1976, p. 147. | MR | Zbl

[9] E. Buffet and J.V. Pulè, Fluctuation properties of the imperfect Bose gas. J. Math. Phys., t. 24, 1983, p. 1608. | MR

[10] M. Reed and B. Simon, Analysis of operators, Methods of modern mathematical physics, Vol. 4, Academic Press, New York and London, 1978. | Zbl

[11] M. Reed and B. Simon, Functional analysis, Methods of modern mathematical physics, Vol. 1, Academic Press, New York and London 1972. | Zbl

[12] E.B. Davies, One-parameter semigroups, London Mathematical Society Monographs, Vol. 15, Academic Press, London and New York, 1980. | MR | Zbl

[13] R.H. Martin, Nonlinear operators and differential equations in Banach spaces. John Wiley, New York and London, 1976. | Zbl

[14] Ph. De Smedt, Ph. D. thesis, Leuven University, 1983.

[15] W. Feller, An introduction to probability theory and its applications, Vol. 2. John Wiley, New York, 1971. | MR | Zbl

[16] M. Fannes, The entropy density of quasi-free states for a continuous boson system. Ann. Inst. Henri Poincaré, t. A 28, 1978, p. 187. | Numdam | MR

[17] R.H. Critchley and J.T. Lewis, The entropy density of quasi-free states. DIAS, TP, 75, 22, unpublished.

[18] J. Weidmann, Linear operators in Hilbert spaces.Graduate texts in mathematics. Vol. 68. Springer Verlag, New York and Berlin, 1980. | MR | Zbl

[19] P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys., t. 49, 1977. p. 435.

[20] M. Luban, Generalized Landau theories, in Phase transitions and critical phenomena, Vol. 5A. C. Domb and M. S. Green editors. Academic Press, London and New York, 1976. | MR

[21] J.D. Gunton and M.J. Buckingham, Condensation of the ideal Bose gas as a co-operative transition. Phys. Rev., t. 166, 1968, p. 152.