Dans ce papier, nous étudions le comportement en temps long du moment exponentiel du Hamiltonien dépendant du temps
In this paper, we investigate the long time asymptotics of the exponential moment for the following time–space Hamiltonian
@article{AIHPB_2015__51_4_1529_0, author = {Chen, Xia and Hu, Yaozhong and Song, Jian and Xing, Fei}, title = {Exponential asymptotics for time{\textendash}space hamiltonians}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1529--1561}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/13-AIHP588}, mrnumber = {3414457}, zbl = {1337.60201}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP588/} }
TY - JOUR AU - Chen, Xia AU - Hu, Yaozhong AU - Song, Jian AU - Xing, Fei TI - Exponential asymptotics for time–space hamiltonians JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1529 EP - 1561 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP588/ DO - 10.1214/13-AIHP588 LA - en ID - AIHPB_2015__51_4_1529_0 ER -
%0 Journal Article %A Chen, Xia %A Hu, Yaozhong %A Song, Jian %A Xing, Fei %T Exponential asymptotics for time–space hamiltonians %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1529-1561 %V 51 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP588/ %R 10.1214/13-AIHP588 %G en %F AIHPB_2015__51_4_1529_0
Chen, Xia; Hu, Yaozhong; Song, Jian; Xing, Fei. Exponential asymptotics for time–space hamiltonians. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1529-1561. doi : 10.1214/13-AIHP588. http://www.numdam.org/articles/10.1214/13-AIHP588/
[1] Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. Amer. Math. Soc., Providence, RI, 2010. | MR | Zbl
.[2] Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann. Probab. 40 (2012) 1436–1482. | DOI | MR | Zbl
.[3] Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann. Probab. 42 (2014) 576–622. | DOI | MR | Zbl
.[4] Large deviations and renormalization for Riesz potentials of stable intersection measures. Stochastic Proc. Appl 120 (2010) 1837–1878. | DOI | MR | Zbl
and .[5] Asymptotic evaluation of certain Wiener integrals for large time. In Functional Integration and Its Applications (Proc. Internat. Conf. London, 1974) 15–33. Clarendon Press, Oxford, 1975. | MR | Zbl
and .[6] Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 (1976) 389–461. | DOI | MR | Zbl
and .[7] Asymptotic for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525–565. | DOI | MR | Zbl
and .[8] Asymptotics for the polaron. Comm. Pure Appl. Math. 36 (1983) 505–528. | DOI | MR | Zbl
and .[9] Linear Operators 1. Wiley, New York, 1988. | Zbl
and .[10] The parabolic Anderson model. In Interacting Stochastic Systems 153–179. Springer, Berlin, 2005. | MR | Zbl
and .[11] A survey of one-dimensional random polymers. Stat. Phys. 103 (5/6) (2001) 915–944. | MR | Zbl
and .[12] Stochastic heat equation driven by fractional noise. Probab. Theory Related Fields 143 (2009) 285–328. | DOI | MR | Zbl
and .[13] Feynman–Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39 (2011) 291–326. | MR | Zbl
, and .[14] Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74 (1987) 399–414. | DOI | MR | Zbl
.[15] Exact ground state energy of the strong coupling polaron. Comm. Math. Phys. 183 (1997) 511–519. | DOI | MR | Zbl
and .[16] The free energy of the Dirac polaron, an explicit solution. Stochastics Stochastics Rep. 34 (1991) 93–125. | DOI | MR | Zbl
.[17] Asymptotic behavior of the solution of heat equation driven by fractional white noise. Statist. Probab. Lett. 82 (2012) 614–620. | DOI | MR | Zbl
.[18] Functional Analysis. Springer, Berlin, 1966. | MR | Zbl
.Cité par Sources :