Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1102-1123.

Nous considérons une équation de Kolmogorov elliptique λu-Ku=f dans un sous-ensemble convexe 𝒞 d’un espace de Hilbert séparable X. L’opérateur de Kolmogorov K est une réalisation de u1 2Tr[D 2 u(x)]+Ax-DU(x),Du(x), où A est un opérateur auto-adjoint dans X et U:X{+} est une fonction convexe. Nous prouvons que pour λ>0 et fL 2 (𝒞,ν) la solution faible u appartient à l’espace de Sobolev W 2,2 (𝒞,ν), où ν est la mesure log-concave associée au système. Nous prouvons aussi des estimations maximales sur le gradient de u qui permettent de montrer que u satisfait des conditions au bord de Neumann au sens des traces à la frontière de 𝒞. Les résultats généraux sont appliqués aux équations de réaction–diffusion de Kolmogorov et à l’équation de Cahn–Hilliard stochastique dans des ensembles convexes d’espaces de Hilbert appropriés.

We consider an elliptic Kolmogorov equation λu-Ku=f in a convex subset 𝒞 of a separable Hilbert space X. The Kolmogorov operator K is a realization of u1 2Tr[D 2 u(x)]+Ax-DU(x),Du(x), A is a self-adjoint operator in X and U:X{+} is a convex function. We prove that for λ>0 and fL 2 (𝒞,ν) the weak solution u belongs to the Sobolev space W 2,2 (𝒞,ν), where ν is the log-concave measure associated to the system. Moreover we prove maximal estimates on the gradient of u, that allow to show that u satisfies the Neumann boundary condition in the sense of traces at the boundary of 𝒞. The general results are applied to Kolmogorov equations of reaction–diffusion and Cahn–Hilliard stochastic PDEÕs in convex sets of suitable Hilbert spaces.

DOI : 10.1214/14-AIHP611
Mots-clés : Kolmogorov operators in infinite dimension, maximal Sobolev regularity, Neumann boundary condition
@article{AIHPB_2015__51_3_1102_0,
     author = {Da Prato, Giuseppe and Lunardi, Alessandra},
     title = {Maximal {Sobolev} regularity in {Neumann} problems for gradient systems in infinite dimensional domains},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1102--1123},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {3},
     year = {2015},
     doi = {10.1214/14-AIHP611},
     mrnumber = {3365974},
     zbl = {1330.35514},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/14-AIHP611/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Lunardi, Alessandra
TI  - Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 1102
EP  - 1123
VL  - 51
IS  - 3
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/14-AIHP611/
DO  - 10.1214/14-AIHP611
LA  - en
ID  - AIHPB_2015__51_3_1102_0
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Lunardi, Alessandra
%T Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 1102-1123
%V 51
%N 3
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/14-AIHP611/
%R 10.1214/14-AIHP611
%G en
%F AIHPB_2015__51_3_1102_0
Da Prato, Giuseppe; Lunardi, Alessandra. Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1102-1123. doi : 10.1214/14-AIHP611. http://www.numdam.org/articles/10.1214/14-AIHP611/

[1] H. Airault and P. Malliavin. Intégration géométrique sur l’espace de Wiener. Bull. Sci. Math. 112 (1988) 3–52. | MR | Zbl

[2] L. Ambrosio, G. Savaré and L. Zambotti. Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 (2009) 517–564. | DOI | MR | Zbl

[3] V. Barbu and G. Da Prato. The generator of the transition semigroup corresponding to a stochastic variational inequality. Comm. Partial Differential Equations 33 (2008) 1318–1338. | DOI | MR | Zbl

[4] V. Barbu, G. Da Prato and L. Tubaro. Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37 (2009) 1427–1458. | DOI | MR | Zbl

[5] V. Barbu, G. Da Prato and L. Tubaro. Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 699–724. | DOI | Numdam | MR | Zbl

[6] V. I. Bogachev. Gaussian Measures. Amer. Math. Soc., Providence, 1998. | DOI | MR | Zbl

[7] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973. | MR | Zbl

[8] P. Celada and A. Lunardi. Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal. 266 (2014) 1948–1987. | DOI | MR | Zbl

[9] E. Cépa. Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500–532. | DOI | MR | Zbl

[10] G. Da Prato. An Introduction to Infinite Dimensional Analysis. Springer, Berlin, 2006. | DOI | MR | Zbl

[11] G. Da Prato, A. Debussche and L. Tubaro. Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation. Ann. Inst. Henri Poincaré Probab. Statist. 40 (2004) 73–88. | DOI | EuDML | Numdam | MR | Zbl

[12] G. Da Prato and A. Lunardi. Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differential Equations 198 (2004) 35–52. | DOI | MR | Zbl

[13] G. Da Prato and A. Lunardi. Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension. Ann. Probab. 42 (2014) 2113–2160. | DOI | MR | Zbl

[14] G. Da Prato and J. Zabczyk. Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Notes 293. Cambridge Univ. Press, Cambridge, 2002. | DOI | MR | Zbl

[15] A. Debussche and L. Zambotti. Conservative stochastic Cahn–Hilliard equation with reflection. Ann. Probab. 35 (2007) 1706–1739. | DOI | MR | Zbl

[16] J. Diestel and J. J. Uhl. Vector Measures. Mathematical Surveys 15. Amer. Math. Soc., Providence, RI, 1977. | DOI | MR | Zbl

[17] D. Feyel and A. De La Pradelle. Hausdorff measures on the Wiener space. Potential Anal. 1 (1992) 177–189. | DOI | MR | Zbl

[18] T. Funaki and S. Olla. Fluctuations for φ interface model on a wall. Stochastic Process. Appl. 94 (2001) 1–27. | DOI | MR | Zbl

[19] D. Nualart and E. Pardoux. White noise driven by quasilinear SPDE’s with reflection. Probab. Theory Related Fields 93 (1992) 77–89. | DOI | MR | Zbl

[20] M. Röckner, R.-C. Zhu and X.-C. Zhu. The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple. Ann. Probab. 40 (2012) 1759–1794. | DOI | MR | Zbl

[21] L. Zambotti. Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 (2002) 579–600. | DOI | MR | Zbl

Cité par Sources :