Nous étudions une classe de processus de Markov déterministes par morceaux, sur espace d’états
We study a class of piecewise deterministic Markov processes with state space
@article{AIHPB_2015__51_3_1040_0, author = {Bena{\"\i}m, Michel and Le Borgne, St\'ephane and Malrieu, Florent and Zitt, Pierre-Andr\'e}, title = {Qualitative properties of certain piecewise deterministic {Markov} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1040--1075}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP619}, mrnumber = {3365972}, zbl = {1325.60123}, language = {en}, url = {http://www.numdam.org/articles/10.1214/14-AIHP619/} }
TY - JOUR AU - Benaïm, Michel AU - Le Borgne, Stéphane AU - Malrieu, Florent AU - Zitt, Pierre-André TI - Qualitative properties of certain piecewise deterministic Markov processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1040 EP - 1075 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/14-AIHP619/ DO - 10.1214/14-AIHP619 LA - en ID - AIHPB_2015__51_3_1040_0 ER -
%0 Journal Article %A Benaïm, Michel %A Le Borgne, Stéphane %A Malrieu, Florent %A Zitt, Pierre-André %T Qualitative properties of certain piecewise deterministic Markov processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1040-1075 %V 51 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/14-AIHP619/ %R 10.1214/14-AIHP619 %G en %F AIHPB_2015__51_3_1040_0
Benaïm, Michel; Le Borgne, Stéphane; Malrieu, Florent; Zitt, Pierre-André. Qualitative properties of certain piecewise deterministic Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1040-1075. doi : 10.1214/14-AIHP619. http://www.numdam.org/articles/10.1214/14-AIHP619/
[1] Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, New York, 1984. | MR | Zbl
and .[2] Invariant densities for dynamical systems with random switching. Nonlinearity 25(10) (2012) 2937–2952. | MR | Zbl
and .[3] Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44 (2005) 328–348. | DOI | MR | Zbl
, and .[4] Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17, no. 56, 14 (2012). | MR | Zbl
, , and .[5] On the stability of planar randomly switched systems. Ann. Appl. Probab. 24(1) (2014) 292–311. | MR | Zbl
, , and .[6] On/off storage systems with state-dependent inpout, outpout and swithching rates. Probab. Engrg. Inform. Sci. 19 (2005) 1–14. | DOI | MR | Zbl
, , and .[7] An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63(6) (2011) 1051–1093. | MR | Zbl
and .[8] Exponential ergodicity for Markov processes with random switching. Bernoulli 21 (2015) 505–536. | DOI | MR | Zbl
and .[9] Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optim. 47(2) (2008) 1053–1077. | MR | Zbl
and .[10] Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 46(3) (1984) 353–388. With discussion. | MR | Zbl
.[11] Markov Models and Optimization. Monographs on Statistics and Applied Probability 49. Chapman & Hall, London, 1993. | MR | Zbl
.[12] Iterated random functions. SIAM Rev. 41(1) (1999) 45–76. | MR | Zbl
and .[13] Random Iterative Models. Springer, Paris, 2000. | MR | Zbl
.[14] A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. in Appl. Probab. 34(1) (2002) 85–111. | MR | Zbl
, and .[15] Stochastic Calculus: A Practical Introduction. Probability and Stochastics Series. CRC Press, Boca Raton, FL, 1996. | MR | Zbl
.[16] Strict ergodicity and transformation of the torus. Amer. J. Math. 83 (1961) 573–601. | DOI | MR | Zbl
.[17] Interacting multi-class transmissions in large stochastic networks. Ann. Appl. Probab. 19(6) (2009) 2334–2361. | MR | Zbl
and .[18] Self-adaptive congestion control for multiclass intermittent connections in a communication network. Queueing Syst. 69(3–4) (2011) 237–257. | MR | Zbl
and .[19] Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Probability and Its Applications. Birkhäuser Boston, Boston, MA, 2006. | MR | Zbl
.[20] Graded and binary responses in stochastic gene expression. Phys. Biol. 197(1) (2004) 197–214.
and .[21] Introduction to Smooth Manifolds, 2nd edition. Graduate Texts in Mathematics 218. Springer, New York, 2013. | MR | Zbl
.[22] Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. 26(3) (1979) 403–413. | MR | Zbl
and .[23] Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York, 1992. | MR | Zbl
.[24] Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 8. Springer, Berlin, 1987. Translated from the Portuguese by Silvio Levy. | MR | Zbl
.[25] Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. in Appl. Probab. 42(3) (2010) 761–794. | MR | Zbl
, and .[26] Existence theorems for differential inclusions with nonconvex right-hand side. Int. J. Math. Sci. 9(3) (1986) 459–469. | EuDML | MR | Zbl
.[27] Théorèmes limites pour des processus de Markov à sauts. Synthèse des résultats et applications en biologie moléculaire. Tech. Sci. Inform. 26(3–4) (2007) 443–469.
, and .[28] Simulation, 2nd edition. Statistical Modeling and Decision Science. Academic Press, San Diego, CA, 1997. | MR | Zbl
.[29] Hybrid Switching Diffusions: Properties and Applications. Stochastic Modelling and Applied Probability 63. Springer, New York, 2010. | MR | Zbl
and .Cité par Sources :