Nous étudions la marche aléatoire sur la composante principale d’un graphe aléatoire d’Erdős–Rényi avec
We study the simple random walk on the giant component of a supercritical Erdős–Rényi random graph on
Mots-clés : random walk, vacant set, Erdős–Rényi random graph, giant component, phase transition, random interlacements
@article{AIHPB_2015__51_2_756_0, author = {Wassmer, Tobias}, title = {Phase transition for the vacant set left by random walk on the giant component of a random graph}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {756--780}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP596}, mrnumber = {3335024}, zbl = {1312.05126}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP596/} }
TY - JOUR AU - Wassmer, Tobias TI - Phase transition for the vacant set left by random walk on the giant component of a random graph JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 756 EP - 780 VL - 51 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP596/ DO - 10.1214/13-AIHP596 LA - en ID - AIHPB_2015__51_2_756_0 ER -
%0 Journal Article %A Wassmer, Tobias %T Phase transition for the vacant set left by random walk on the giant component of a random graph %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 756-780 %V 51 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP596/ %R 10.1214/13-AIHP596 %G en %F AIHPB_2015__51_2_756_0
Wassmer, Tobias. Phase transition for the vacant set left by random walk on the giant component of a random graph. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 756-780. doi : 10.1214/13-AIHP596. https://www.numdam.org/articles/10.1214/13-AIHP596/
[1] Inequalities for rare events in time-reversible Markov chains. I. In Stochastic Inequalities (Seattle, WA, 1991) 1–16. IMS Lecture Notes Monogr. Ser. 22. IMS, Hayward, CA, 1992. | MR | Zbl
and .[2] Reversible Markov Chains and Random Walks on Graphs. Book in preparation. Available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html.
and .[3] Random walks, universal traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico, 1979) 218–223. IEEE, New York, 1979. | MR
, , , and .[4] Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York, 1972. | MR | Zbl
and .[5] The mixing time of the giant component of a random graph, 2006. Available at arXiv:math/0610459. | MR | Zbl
, and .[6] Giant component and vacant set for random walk on a discrete torus. J. Eur. Math. Soc. (JEMS) 10 (2008) 133–172. | MR | Zbl
and .[7] Random Graphs, 2nd edition. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge, 2001. | DOI | MR | Zbl
.
[8] Giant vacant component left by a random walk in a random
[9] From Random Walk Trajectories to Random Interlacements. Mathematical Surveys 23. Sociedade Brasileira de Matemática, Rio de Janeiro, 2012. | MR | Zbl
and .[10] Critical window for the vacant set left by random walk on random regular graphs. Random Structures Algorithms 43 (2013) 313–337. | DOI | MR | Zbl
and .[11] Component structure of the vacant set induced by a random walk on a random graph. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms 1211–1221. SIAM, Philadelphia, PA, 2011. | MR | Zbl
and .[12] Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
.[13] On the evolution of random graphs. Bull. Inst. Internat. Statist. 38 (1961) 343–347. | MR | Zbl
and .[14] The scaling window for a random graph with a given degree sequence. Random Structures Algorithms 41 (2012) 99–123. | DOI | MR | Zbl
and .[15] Random graphs and complex networks. Lecture notes in preparation, 2008. Available at http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf.
.[16] Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 2000. | DOI | MR | Zbl
, and .[17] Universality of trap models in the ergodic time scale. Ann. Probab. 42 (2014) 2497–2557. | DOI | MR | Zbl
, and .[18] Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson. | MR | Zbl
, and .[19] Probability on Trees and Networks. Cambridge Univ. Press, Cambridge, in preparation, 2015. Current version available at http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html.
and .[20] Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin. 16. 195–248. Springer, Berlin, 1998. | MR | Zbl
.[21] Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (2010) 2039–2087. | MR | Zbl
.[22] Random interlacements on Galton–Watson trees. Electron. Commun. Probab. 15 (2010) 562–571. | DOI | MR | Zbl
.[23] Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (54) (2009) 1604–1628. | MR | Zbl
.[24] On the fragmentation of a torus by random walk. Comm. Pure Appl. Math. 64 (2011) 1599–1646. | DOI | MR | Zbl
and .Cité par Sources :