Dans le modèle de percolation sur le réseau triangulaire et pour certaines généralisations pour lesquelles la formule de Cardy a été établie, nous démontrons un taux de convergence en loi de puissance des probabilités de percolation vers la formule de Cardy.
For the site percolation model on the triangular lattice and certain generalizations for which Cardy’s Formula has been established we acquire a power law estimate for the rate of convergence of the crossing probabilities to Cardy’s Formula.
Mots-clés : critical percolation, crossing probability, triangular lattice, conformal invariance, Cardy’s formula
@article{AIHPB_2015__51_2_672_0, author = {Binder, I. and Chayes, L. and Lei, H. K.}, title = {On the rate of convergence for critical crossing probabilities}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {672--715}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP589}, mrnumber = {3335021}, zbl = {1330.82025}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP589/} }
TY - JOUR AU - Binder, I. AU - Chayes, L. AU - Lei, H. K. TI - On the rate of convergence for critical crossing probabilities JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 672 EP - 715 VL - 51 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP589/ DO - 10.1214/13-AIHP589 LA - en ID - AIHPB_2015__51_2_672_0 ER -
%0 Journal Article %A Binder, I. %A Chayes, L. %A Lei, H. K. %T On the rate of convergence for critical crossing probabilities %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 672-715 %V 51 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP589/ %R 10.1214/13-AIHP589 %G en %F AIHPB_2015__51_2_672_0
Binder, I.; Chayes, L.; Lei, H. K. On the rate of convergence for critical crossing probabilities. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 672-715. doi : 10.1214/13-AIHP589. http://www.numdam.org/articles/10.1214/13-AIHP589/
[1] On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92 (1983) 19–69. | DOI | MR | Zbl
, , , and .[2] Cardy’s Formula on the triangular lattice, the easy way. In Universality and Renormalization 39–45. Fields Institute Communications 50. Amer. Math. Soc., Providence, RI, 2007. | MR | Zbl
.[3] On the rate of convergence of loop-erased random walk to . Comm. Math. Phys. 318 (2013) 307–354. | DOI | MR | Zbl
, and .[4] On convergence to I: Conformal invariance for certain models of the bond-triangular type. J. Stat. Phys. 141 (2) (2010) 359–390. | MR | Zbl
, and .[5] On convergence to II: Discrete approximations and extraction of Cardy’s formula for general domains. J. Stat. Phys. 141 (2) (2010) 391–408. | MR | Zbl
, and .[6] Critical percolation exploration path and : A proof of convergence. Probab. Theory Related Fields 139 (2007) 473–519. | DOI | MR | Zbl
and .[7] Critical percolation in finite geometries. J. Phys. A 25 (1992) 201–206. | DOI | MR | Zbl
.[8] Discontinuity of the spin-wave stiffness in the two-dimensional model. Comm. Math. Phys. 197 (1998) 623–640. | DOI | MR | Zbl
.[9] Mean field analysis of low-dimensional systems. Comm. Math. Phys. 292 (2009) 303–341. | DOI | MR | Zbl
.[10] Cardy’s formula for certain models of the bond-triangular type. Rev. Math. Phys. 19 (5) (2007) 511–565. | MR | Zbl
and .[11] A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 (1960) 13–20. | DOI | MR | Zbl
.[12] Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI, 2005. | MR | Zbl
.[13] Rate of convergence for Cardy’s formula. Comm. Math. Phys. 329 (1) (2014) 29–56. | MR | Zbl
, and .[14] Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math. 333 (2001) 239–244. | MR | Zbl
.[15] Convergence rates for loop-erased random walk and other loewner curves. Ann. Probab. To appear, 2015. Available at http://arxiv.org/abs/1205.5734. | MR | Zbl
.[16] On the degree of variation in conformal mapping of variable regions. Trans. Amer. Math. Soc. 69 (2) (1950) 335–356. | MR | Zbl
.[17] Lectures on two-dimensional critical percolation. In Statistical Mechanics 297–360. IAS/Park City Math. Ser. 16. Amer. Math. Soc., Providence, RI, 2009. | MR | Zbl
.Cité par Sources :