Soit
Let
Mots-clés : invariant random fields, Fourier expansions, characterization of gaussian random fields
@article{AIHPB_2015__51_2_648_0, author = {Baldi, P. and Trapani, S.}, title = {Fourier coefficients of invariant random fields on homogeneous spaces of compact {Lie} groups}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {648--671}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/14-AIHP600}, mrnumber = {3335020}, zbl = {1353.60008}, language = {en}, url = {https://www.numdam.org/articles/10.1214/14-AIHP600/} }
TY - JOUR AU - Baldi, P. AU - Trapani, S. TI - Fourier coefficients of invariant random fields on homogeneous spaces of compact Lie groups JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 648 EP - 671 VL - 51 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/14-AIHP600/ DO - 10.1214/14-AIHP600 LA - en ID - AIHPB_2015__51_2_648_0 ER -
%0 Journal Article %A Baldi, P. %A Trapani, S. %T Fourier coefficients of invariant random fields on homogeneous spaces of compact Lie groups %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 648-671 %V 51 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/14-AIHP600/ %R 10.1214/14-AIHP600 %G en %F AIHPB_2015__51_2_648_0
Baldi, P.; Trapani, S. Fourier coefficients of invariant random fields on homogeneous spaces of compact Lie groups. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 648-671. doi : 10.1214/14-AIHP600. https://www.numdam.org/articles/10.1214/14-AIHP600/
[1] Some characterizations of the spherical harmonics coefficients for isotropic random rields. Statist. Probab. Lett. 77 (2007) 490–496. | DOI | MR | Zbl
and .[2] On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups. Electron. Commun. Probab. 12 (2007) 291–302 (electronic). | DOI | MR | Zbl
, and .[3] T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups. Graduate Texts in Mathematics 98. Springer, New York, 1995. | MR | Zbl
[4] Exercises in Probability. Cambridge Series in Statistical and Probabilistic Mathematics 13. Cambridge Univ. Press, Cambridge, 2003. | DOI | MR | Zbl
and .[5] Analysis on Lie Groups. Cambridge Studies in Advanced Mathematics 110. Cambridge Univ. Press, Cambridge, 2008. | DOI | MR | Zbl
.[6] A characterization of the multivariate normal distribution. Ann. Math. Statist. 33 (1962) 533–541. | DOI | MR | Zbl
and .[7] Characterization Problems in Mathematical Statistics. Wiley, New York, 1973. | MR | Zbl
, and .[8] Invariant random fields in vector bundles and application to cosmology. Ann. Inst. Henri Poincare Probab. Stat. 47 (4) (2011) 1068–1095. | Numdam | MR | Zbl
.[9] Random Fields. London Mathematical Society Lecture Note Series 389. Cambridge Univ. Press, Cambridge, 2011. | MR | Zbl
and .[10] Mean-square continuity on homogeneous spaces of compact groups. Electron. Commun. Probab. 18 (2013) 37. | MR | Zbl
and .[11] Decompositions of stochastic processes based on irreducible group representations. Teor. Veroyatn. Primen. 54 (2) (2009) 304–336. | MR | Zbl
and .[12] Representation of Lie Groups and Special Functions. Vol. 1. Mathematics and Its Applications (Soviet Series) 72. Kluwer Academic, Dordrecht, 1991. | DOI | MR | Zbl
and .- Exchangeability and irreducible rotational invariance, Proceedings of the American Mathematical Society, Volume 153 (2024) no. 2, p. 513 | DOI:10.1090/proc/17058
- Isotropic random spin weighted functions on 𝑆² vs isotropic random fields on 𝑆³, Theory of Probability and Mathematical Statistics, Volume 107 (2022) no. 0, p. 77 | DOI:10.1090/tpms/1177
Cité par 2 documents. Sources : Crossref