R. Gangolli (1964) publia une formule du type Lévy–Khintchine, caractérisant les probabilités infiniment divisibles
In 1964 R. Gangolli published a Lévy–Khintchine type formula which characterised
Mots-clés : lévy process, Lie group, Lie algebra, generalised Eisenstein integral, Eisenstein transform, extended Gangolli Lévy–Khintchine formula, symmetric space, hyperbolic space
@article{AIHPB_2015__51_2_599_0, author = {Applebaum, David and Dooley, Anthony}, title = {A generalised {Gangolli{\textendash}L\'evy{\textendash}Khintchine} formula for infinitely divisible measures and {L\'evy} processes on semi-simple {Lie} groups and symmetric spaces}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {599--619}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP570}, mrnumber = {3335018}, zbl = {1353.60007}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP570/} }
TY - JOUR AU - Applebaum, David AU - Dooley, Anthony TI - A generalised Gangolli–Lévy–Khintchine formula for infinitely divisible measures and Lévy processes on semi-simple Lie groups and symmetric spaces JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 599 EP - 619 VL - 51 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP570/ DO - 10.1214/13-AIHP570 LA - en ID - AIHPB_2015__51_2_599_0 ER -
%0 Journal Article %A Applebaum, David %A Dooley, Anthony %T A generalised Gangolli–Lévy–Khintchine formula for infinitely divisible measures and Lévy processes on semi-simple Lie groups and symmetric spaces %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 599-619 %V 51 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP570/ %R 10.1214/13-AIHP570 %G en %F AIHPB_2015__51_2_599_0
Applebaum, David; Dooley, Anthony. A generalised Gangolli–Lévy–Khintchine formula for infinitely divisible measures and Lévy processes on semi-simple Lie groups and symmetric spaces. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 599-619. doi : 10.1214/13-AIHP570. https://www.numdam.org/articles/10.1214/13-AIHP570/
[1] Lévy processes and their subordination in matrix Lie groups. Bull. Sci. Math. 131 (2007) 738–760. | DOI | MR | Zbl
and .[2] Compound Poisson processes and Lévy processes in groups and symmetric spaces. J. Theoret. Probab. 13 (2000) 383–425. | DOI | MR | Zbl
.[3] On the subordination of spherically symmetric Lévy processes in Lie groups. Internat. Math. J. 1 (2002) 185–195. | MR | Zbl
.[4] Lévy Processes and Stochastic Calculus, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. | DOI | MR | Zbl
.[5] Aspects of recurrence and transience for Lévy processes in transformation groups and non-compact Riemannian symmetric pairs. J. Australian Math. Soc. 94 (2013) 304–320. | DOI | MR | Zbl
.[6] Isotropic Lévy processes on Riemannian manifolds. Ann. Probab. 28 (2000) 166–184. | DOI | MR | Zbl
and .[7] A Paley–Wiener theorem for real reductive groups. Acta Math. 150 (1983) 1–89. | DOI | MR | Zbl
.[8] Dirichlet forms on symmetric spaces. Ann. Inst. Fourier (Grenoble) 23 (1973) 135–156. | Numdam | MR | Zbl
.[9] Semi-groupes de Feller invariants sur les espaces homogènes non moyennables. Math. Z. 136 (1974) 279–290. | DOI | MR | Zbl
and .[10] Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter, Berlin, 1995. | MR | Zbl
and .[11] Embeddability of infinitely divisible distributions on linear Lie groups. Invent. Math. 110 (1992) 237–261. | DOI | MR | Zbl
and .[12] Convolution roots and embedding of probability measures on Lie groups. Adv. Math. 209 (2007) 198–211. | DOI | MR | Zbl
and .[13] Isotropic infinitely divisible measures on symmetric spaces. Acta Math. 111 (1964) 213–246. | DOI | MR | Zbl
.[14] Sample functions of certain differential processes on symmetric spaces. Pacific J. Math. 15 (1965) 477–496. | DOI | MR | Zbl
.[15] Infinitely divisible probabilities on the hyperbolic plane. Pacific J. Math. 11 (1961) 1287–1308. | DOI | MR | Zbl
.[16] Groups and Geometric Analysis. Academic Press, New York, 1984. Reprinted with corrections by the Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[17] Geometric Analysis on Symmetric Spaces. Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl
.[18] Convolution semigroups of probability measures on Gelfand pairs. Expo. Math. 1 (1983) 3–45. | MR | Zbl
.[19] Transient Feller semigroups on certain Gelfand pairs. Bull. Inst. Math. Acad. Sinica 11 (1983) 227–256. | MR | Zbl
.[20] Möbius deconvolution on the hyperbolic plane with application to impedance density estimation. Ann. Statist. 38 (2010) 2465–2498. | DOI | MR | Zbl
, , and .[21] Semigroups of measures on Lie groups. Trans. Amer. Math. Soc. 81 (1956) 264–293. | DOI | MR | Zbl
.[22] Representation Theory of Semisimple Groups. Princeton Univ. Press, Princeton, NJ, 1986. | MR | Zbl
.[23] Lie Groups Beyond an Introduction, 2nd edition. Birkhäuser, Berlin, 2002. | MR | Zbl
.[24] Lévy Processes in Lie Groups. Cambridge Univ. Press, Cambridge, 2004. | MR | Zbl
.[25] Lévy–Khinchin formula and existence of densities for convolution semigroups on symmetric spaces. Potential Anal. 27 (2007) 133–150. | DOI | MR | Zbl
and .[26] Representation theory, Radon transform and the heat equation on a Riemannian symmetric space. In Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey 315–344. Contemp. Math. 449. Amer. Math. Soc., Providence, RI, 2008. | MR | Zbl
and .[27] Lévy Processes and Infinite Divisibility. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[28] Conservativeness and extensions of Feller semigroups. Positivity 2 (1998) 239–256. | DOI | MR | Zbl
.[29] The Plancherel decomposition for a reductive symmetric space. II. Representation theory. Invent. Math. 161 (2005) 567–628. | MR | Zbl
and .[30] The principal series for a reductive symmetric space. II. Eisenstein integrals. J. Funct. Anal. 109 (1992) 331–441. | MR | Zbl
.[31] Weyl eigenfunction expansions and harmonic analysis on non-compact symmetric spaces. In Groups and Analysis 24–62. London Math. Soc. Lecture Note Ser. 354. Cambridge Univ. Press, Cambridge, 2008. | MR | Zbl
.[32] Private e-mail communication to the authors.
.[33] Real Reductive Groups. I. Academic Press, Boston, MA, 1988. | MR | Zbl
.[34] Lévy stochastic differential geometry with applications in derivative pricing. Ph.D. thesis, Univ. New South Wales, 2010.
.Cité par Sources :