Nous construisons, sur un unique espace de probabilités, une famille d’ensembles régénératifs
We construct, on a single probability space, a class of regenerative sets
Mots-clés : regenerative set, subordinator, Bernstein function
@article{AIHPB_2015__51_2_533_0, author = {Marchal, P.}, title = {A class of special subordinators with nested ranges}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {533--544}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP595}, mrnumber = {3335014}, zbl = {1329.60123}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP595/} }
TY - JOUR AU - Marchal, P. TI - A class of special subordinators with nested ranges JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 533 EP - 544 VL - 51 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP595/ DO - 10.1214/13-AIHP595 LA - en ID - AIHPB_2015__51_2_533_0 ER -
Marchal, P. A class of special subordinators with nested ranges. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 533-544. doi : 10.1214/13-AIHP595. https://www.numdam.org/articles/10.1214/13-AIHP595/
[1] Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997) 1–91. Lecture Notes in Math. 1717. Springer, Berlin, 1999. | MR | Zbl
.[2] Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 (1961) 493–516. | MR | Zbl
and .[3] Fluctuation Theory for Lévy Processes. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005. Lecture Notes in Mathematics 1897. Springer, Berlin, 2007. | MR | Zbl
.[4] The set of real numbers left uncovered by random covering intervals. Z. Wahrsch. Verw. Gebiete 70 (1985) 175–189. | DOI | MR | Zbl
, and .[5] Renewal sets and random cutouts. Z. Wahrsch. Verw. Gebiete 22 (1972) 145–157. | DOI | MR | Zbl
.[6] Nested regenerative sets and their associated fragmentation process. In Mathematics and Computer Science III. Trends Math. 461–470. Birkhäuser, Basel, 2004. | MR | Zbl
.[7] On random sets connected to the partial records of Poisson point process. J. Theoret. Probab. 16 (1) (2003) 277–307. | MR | Zbl
.[8] Bernstein Functions. Theory and Applications. De Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin, 2010. | MR | Zbl
, and .[9] Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 22 (1972) 163–170. | DOI | MR | Zbl
.[10] Some remarks on special subordinators. Rocky Mountain J. Math. 40 (1) (2010) 321–337. | MR | Zbl
and .- Extremal shot noise processes and random cutout sets, Bernoulli, Volume 31 (2025) no. 2 | DOI:10.3150/24-bej1770
- First Passage Times of Subordinators and Urns, A Lifetime of Excursions Through Random Walks and Lévy Processes, Volume 78 (2021), p. 343 | DOI:10.1007/978-3-030-83309-1_18
- Minkowski Sums, Theory of Random Sets, Volume 87 (2017), p. 317 | DOI:10.1007/978-1-4471-7349-6_3
- Unions of Random Sets, Theory of Random Sets, Volume 87 (2017), p. 379 | DOI:10.1007/978-1-4471-7349-6_4
- Random Sets and Random Functions, Theory of Random Sets, Volume 87 (2017), p. 451 | DOI:10.1007/978-1-4471-7349-6_5
- Complete Bernstein functions and subordinators with nested ranges. A note on a paper by P. Marchal, Electronic Communications in Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ecp31
Cité par 6 documents. Sources : Crossref