Nous étudions différentes percolations de Bernoulli sur les cartes aléatoires du demi-plan obtenues comme limites locales de triangulations ou quadrangulations planaires uniformes. En utilisant la propriété de Markov spatiale – ou épluchage (Geom. Funct. Anal. 13 (2003) 935–974) – de ces réseaux, nous prouvons une formule simple et universelle pour le paramètre critique de percolation par arêtes ou par sites sur ces cartes. Nos techniques nous permettent également de calculer certains exposants « annealed » presque-critiques et critiques comme la probabilité qu’un cluster ait un grand volume ou un grand périmètre.
We study Bernoulli percolations on random maps in the half-plane obtained as local limit of uniform planar triangulations or quadrangulations. Using the characteristic spatial Markov property or peeling process (Geom. Funct. Anal. 13 (2003) 935–974) of these random maps we prove a surprisingly simple universal formula for the critical threshold for bond and face percolations on these graphs. Our techniques also permit us to compute off-critical and critical annealed exponents related to percolation clusters such as the probabilities of a cluster having a large volume or perimeter.
Mots-clés : random planar map, percolation, critical exponent
@article{AIHPB_2015__51_2_405_0, author = {Angel, Omer and Curien, Nicolas}, title = {Percolations on random maps {I:} {Half-plane} models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {405--431}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP583}, mrnumber = {3335009}, zbl = {1315.60105}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP583/} }
TY - JOUR AU - Angel, Omer AU - Curien, Nicolas TI - Percolations on random maps I: Half-plane models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 405 EP - 431 VL - 51 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP583/ DO - 10.1214/13-AIHP583 LA - en ID - AIHPB_2015__51_2_405_0 ER -
%0 Journal Article %A Angel, Omer %A Curien, Nicolas %T Percolations on random maps I: Half-plane models %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 405-431 %V 51 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP583/ %R 10.1214/13-AIHP583 %G en %F AIHPB_2015__51_2_405_0
Angel, Omer; Curien, Nicolas. Percolations on random maps I: Half-plane models. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 405-431. doi : 10.1214/13-AIHP583. http://www.numdam.org/articles/10.1214/13-AIHP583/
[1] Ballot theorems, old and new. In Horizons of Combinatorics. Bolyai Soc. Math. Stud. 17 9–35. Springer, Berlin, 2008. | MR | Zbl
and .[2] The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin, 2004. | MR | Zbl
and .[3] Quantum Geometry: A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. | DOI | MR | Zbl
, and .[4] Scaling of percolation on infinite planar maps, I. Available at arXiv:math/0501006.
.[5] Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 (2003) 935–974. | DOI | MR | Zbl
.[6] Percolations on infinite random maps II, full-plane models. Unpublished manuscript.
and .[7] Classification of domain Markov half planar maps. Ann. Probab. To appear, 2015. Available at arXiv:1303.6582. | MR
and .[8] Uniform infinite planar triangulation. Comm. Math. Phys. 241 (2003) 191–213. | DOI | MR | Zbl
and .[9] Hausdorff dimensions for . Ann. Probab. 32 (2004) 2606–2629. | DOI | MR | Zbl
.[10] Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal. 23 (2013) 501–531. | DOI | MR | Zbl
and .[11] Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (2001) 23 (electronic). | MR | Zbl
and .[12] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | Zbl
.[13] Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) Research Paper 69 (electronic). | MR | Zbl
, and .[14] Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 (2009) 465208. | MR | Zbl
and .[15] Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 (2006) 879–917. | DOI | MR | Zbl
and .[16] The Brownian plane. Available at arXiv:1204.5921. | DOI | MR | Zbl
and .[17] A view from infinity of the uniform infinite planar quadrangulation. ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013) 45–88. | MR | Zbl
, and .[18] Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms. To appear, 2015. Available at arXiv:1202.5452. | DOI | MR | Zbl
and .[19] On the exact asymptotic behaviour of the distribution of ladder epochs. Stochastic Process. Appl. 12 (1982) 203–214. | DOI | MR | Zbl
.[20] Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333–393. | DOI | MR | Zbl
and .[21] Combinatorial Enumeration. Wiley-Interscience Series in Discrete Mathematics. Wiley, New York, 1983. | MR | Zbl
and .[22] Recurrence of planar graph limits. Ann. of Math. (2) 177 (2013) 761–781. | MR | Zbl
and .[23] Percolation on a fractal with the statistics of planar Feynman graphs: Exact solution. Modern Phys. Lett. A 17 (1989) 1691–1704. | DOI | MR
.[24] Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3 (1988) 819–826. | DOI | MR
, and .[25] Local structure of random quadrangulations. Available at arXiv:math/0512304.
.[26] On one property of distances in the infinite random quadrangulation. Available at arXiv:0805.1907.
.[27] Explicit enumeration of triangulations with multiple boundaries. Electron. J. Combin. 14 (2007) Research Paper 61 (electronic). | MR | Zbl
.[28] Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. | MR | Zbl
.[29] Scaling limits for the uniform infinite quadrangulation. Illinois J. Math. 54 (2010) 1163–1203. | MR | Zbl
and .[30] Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642–1705. | MR | Zbl
and .[31] Percolation on uniform infinite planar maps. Available at arXiv:1302.2851. | DOI | Zbl
and .[32] The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013) 319–401. | DOI | MR | Zbl
.[33] Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, 1998.
.[34] Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177–217. | DOI | MR | Zbl
and .[35] Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441 (1995) 119–163. | DOI | MR | Zbl
.Cité par Sources :