On considère un gaz sur réseau évoluant selon la dynamique de Kawasaki à température inverse
Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature
Mots-clés : metastability, tunneling, lattice gases, kawasaki dynamics, capacities
@article{AIHPB_2015__51_1_59_0, author = {Beltr\'an, J. and Landim, C.}, title = {Tunneling of the {Kawasaki} dynamics at low temperatures in two dimensions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {59--88}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP568}, mrnumber = {3300964}, zbl = {06412898}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP568/} }
TY - JOUR AU - Beltrán, J. AU - Landim, C. TI - Tunneling of the Kawasaki dynamics at low temperatures in two dimensions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 59 EP - 88 VL - 51 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP568/ DO - 10.1214/13-AIHP568 LA - en ID - AIHPB_2015__51_1_59_0 ER -
%0 Journal Article %A Beltrán, J. %A Landim, C. %T Tunneling of the Kawasaki dynamics at low temperatures in two dimensions %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 59-88 %V 51 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP568/ %R 10.1214/13-AIHP568 %G en %F AIHPB_2015__51_1_59_0
Beltrán, J.; Landim, C. Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 59-88. doi : 10.1214/13-AIHP568. https://www.numdam.org/articles/10.1214/13-AIHP568/
[1] Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140 (2010) 1065–1114. | DOI | MR | Zbl
and .[2] Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Related Fields 152 (2012) 781–807. | DOI | MR | Zbl
and .[3] Metastability of reversible finite state Markov processes. Stochastic Process. Appl. 121 (2011) 1633–1677. | DOI | MR | Zbl
and .[4] Tunneling and metastability of continuous time Markov chains II. The nonreversible case. J. Stat. Phys. 149 (2012) 598–618. | MR | Zbl
and .[5] Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Related Fields 119 (2001) 99–161. | DOI | MR | Zbl
, , and .[6] Metastability and low lying spectra in reversible Markov chains. Comm. Math. Phys. 228 (2002) 219–255. | DOI | MR | Zbl
, , and .[7] Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probab. Theory Related Fields 135 (2006) 265–310. | DOI | MR | Zbl
, and .[8] Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Probab. 38 (2010) 661–713. | DOI | MR | Zbl
, and .[9] Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. J. Stat. Phys. 107 (2002) 757–779. | DOI | MR | Zbl
and .[10] Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35 (1984) 603–634. | DOI | MR | Zbl
, , and .[11] Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions. Markov Process. Related Fields 11 (2005) 553–628. | MR | Zbl
, and .[12] Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119 (2009) 737–774. | DOI | MR | Zbl
, , , and .[13] Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. Preprint, 2013. Available at arXiv:1305.4542. | MR | Zbl
and .[14] Droplet growth for three dimensional Kawasaki dynamics. Probab. Theory Related Fields 125 (2003) 153–194. | DOI | MR | Zbl
, , and .[15] Metastability and nucleation for conservative dynamics. J. Math. Phys. 41 (2000) 1424–1498. | DOI | MR | Zbl
, and .[16] Quenched scaling limits of trap models. Ann. Probab. 39 (2011) 176–223. | DOI | MR | Zbl
, and .[17] Universality of trap models in the ergodic time scale. Ann. Probab. To appear. Available at http://arxiv.org/abs/1208.5675, 2012. | MR | Zbl
, and .[18] Metastability for a non-reversible dynamics: The evolution of the condensate in totally asymmetric zero range processes. Available at arXiv:1204.5987, 2012. | MR | Zbl
.[19] On the essential features of metastability: Tunnelling Time and critical configurations. J. Stat. Phys. 115 (2004) 591–642. | DOI | MR | Zbl
, , and .[20] Anisotropy effects in nucleation for conservative dynamics. J. Stat. Phys. 119 (2005) 539–595. | DOI | MR | Zbl
, and .[21] Markov Chains. Cambridge Univ. Press, Cambridge, 1997. | Zbl
.[22] Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79 (1995) 613–647. | MR | Zbl
and .[23] Markov Chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case. J. Stat. Phys. 84 (1996) 987–1041. | MR | Zbl
and .[24] Metastable behavior of low-temperature Glauber dynamics with stirring. J. Stat. Phys. 80 (1995) 1165–1184. | DOI | MR | Zbl
.[25] Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73 (1993) 83–121. | DOI | MR | Zbl
.- Quasi-Stationary Distributions of Non-Absorbing Markov Chains, Journal of Statistical Physics, Volume 192 (2025) no. 3 | DOI:10.1007/s10955-025-03427-8
- Kawasaki dynamics beyond the uniqueness threshold, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01326-9
- Droplet dynamics in a two-dimensional rarefied gas under Kawasaki dynamics, Stochastic Processes and their Applications, Volume 177 (2024), p. 104460 | DOI:10.1016/j.spa.2024.104460
- Metastable Γ-expansion of finite state Markov chains level two large deviations rate functions, The Annals of Applied Probability, Volume 34 (2024) no. 4 | DOI:10.1214/24-aap2051
- Metastability from the large deviations point of view: A Γ-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains, Stochastic Processes and their Applications, Volume 165 (2023), p. 275 | DOI:10.1016/j.spa.2023.09.001
- Metastable Markov chains, Probability Surveys, Volume 16 (2019) no. none | DOI:10.1214/18-ps310
- Tunneling of the hard‐core model on finite triangular lattices, Random Structures Algorithms, Volume 55 (2019) no. 1, p. 215 | DOI:10.1002/rsa.20795
- Metastable Markov chains: from the convergence of the trace to the convergence of the finite-dimensional distributions, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ejp220
- Evolution of the ABC model among the segregated configurations in the zero-temperature limit, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 52 (2016) no. 2 | DOI:10.1214/14-aihp648
- A Martingale approach to metastability, Probability Theory and Related Fields, Volume 161 (2015) no. 1-2, p. 267 | DOI:10.1007/s00440-014-0549-9
- Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus, The Annals of Probability, Volume 43 (2015) no. 4 | DOI:10.1214/14-aop930
- Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes, Communications in Mathematical Physics, Volume 330 (2014) no. 1, p. 1 | DOI:10.1007/s00220-014-2072-3
Cité par 12 documents. Sources : Crossref