Des cocycles de Feller stochastiques quantiques
It is shown how to construct
Mots-clés : quantum dynamical semigroup, quantum Markov semigroup, cpc semigroup, strongly continuous semigroup, semigroup dilation, Feller cocycle, higher-order itô product formula, random walks on discrete groups, quantum exclusion process, non-commutative torus
@article{AIHPB_2015__51_1_349_0, author = {Belton, Alexander C. R. and Wills, Stephen J.}, title = {An algebraic construction of quantum flows with unbounded generators}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {349--375}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP578}, mrnumber = {3300974}, zbl = {1309.81121}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP578/} }
TY - JOUR AU - Belton, Alexander C. R. AU - Wills, Stephen J. TI - An algebraic construction of quantum flows with unbounded generators JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 349 EP - 375 VL - 51 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP578/ DO - 10.1214/13-AIHP578 LA - en ID - AIHPB_2015__51_1_349_0 ER -
%0 Journal Article %A Belton, Alexander C. R. %A Wills, Stephen J. %T An algebraic construction of quantum flows with unbounded generators %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 349-375 %V 51 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP578/ %R 10.1214/13-AIHP578 %G en %F AIHPB_2015__51_1_349_0
Belton, Alexander C. R.; Wills, Stephen J. An algebraic construction of quantum flows with unbounded generators. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 349-375. doi : 10.1214/13-AIHP578. https://www.numdam.org/articles/10.1214/13-AIHP578/
[1] On the structure of Markov flows. Chaos Solitons Fractals 12 (14–15) (2001) 2639–2655. | MR | Zbl
and .[2] The rotation algebra. Houston J. Math. 15 (1) (1989) 1–26. | MR | Zbl
and .[3] Classical and quantum stochastic calculus. In Quantum Probability Communications X 1–52. R. L. Hudson and J. M. Lindsay (Eds). World Scientific, Singapore, 1998. | MR
.[4] Calcul stochastique non-commutatif. In Lectures on Probability Theory (Saint-Flour, 1993) 1–96. P. Bernard (Ed.). Lecture Notes in Mathematics 1608. Springer, Berlin, 1995. | MR | Zbl
.[5] Itô’s stochastic calculus and Heisenberg commutation relations. Stochastic Process. Appl. 120 (5) (2010) 698–720. | MR | Zbl
.[6] Operator Algebras and Quantum Statistical Mechanics 1 2002. | MR | Zbl
and .[7] Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics, second printing of the second edition. Springer, Berlin, 2002. | MR | Zbl
and .[8] Probability and geometry on some noncommutative manifolds. J. Operator Theory 49 (1) (2003) 185–201. | MR | Zbl
, and .[9] Higher order Itô product formula and generators of evolutions and flows. Internat. J. Theoret. Phys. 34 (8) (1995) 1481–1486. | MR | Zbl
, and .
[10]
[11] Quantum Markov semigroups and quantum flows. Proyecciones 18 (3) (1999). 1–144. | MR | Zbl
.[12] Quantum flows with unbounded structure maps and finite degrees of freedom. J. London Math. Soc. (2) 48 (3) (1993) 537–551. | MR | Zbl
and .[13] Sufficient condition for the existence of invariant states for the asymmetric exclusion QMS. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2) (2011) 337–343. | MR | Zbl
, and .[14] The asymmetric exclusion quantum Markov semigroup. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (3) (2009) 367–385. | MR | Zbl
and .[15] Dilation of a class of quantum dynamical semigroups with unbounded generators on UHF algebras. Ann. Inst. H. Poincaré Probab. Statist. 41 (3) (2005) 505–522. | Numdam | MR | Zbl
, and .[16] Quantum Ito’s formula and stochastic evolutions. Comm. Math. Phys. 93 (3) (1984) 301–323. | MR | Zbl
and .[17] Chaotic expansion of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus. Proc. London Math. Soc. (3) 77 (2) (1998) 462–480. | MR | Zbl
and .[18] Quantum diffusions and the noncommutative torus. Lett. Math. Phys. 15 (1) (1988) 47–53. | MR | Zbl
and .[19] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin, 1999. | MR | Zbl
.[20] Quantum stochastic analysis – An introduction. In Quantum Independent Increment Processes I 181–271. M. Schürmann and U. Franz (Eds). Lecture Notes in Mathematics 1865. Springer, Berlin, 2005. | MR | Zbl
.[21] Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise. Probab. Theory Related Fields 116 (4) (2000) 505–543. | MR | Zbl
and .[22] Markovian cocycles on operator algebras adapted to a Fock filtration. J. Funct. Anal. 178 (2) (2000) 269–305. | MR | Zbl
and .
[23] Existence of Feller cocycles on a
[24] Homomorphic Feller cocycles on a
[25] Quantum stochastic cocycles and completely bounded semigroups on operator spaces. Int. Math. Res. Not. IMRN. To appear, 2014. DOI:10.1093/imrn/rnt001. | DOI | MR | Zbl
and .[26] Quantum Probability for Probabilists, 2nd edition. Lecture Notes in Mathematics 1538. Springer, Berlin, 1995. | MR | Zbl
.[27] Markov chains as Evan–Hudson diffusions in Fock space. In Séminaire de Probabilités XXIV 362–369. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Mathematics 1426. Springer, Berlin, 1990. | Numdam | MR | Zbl
and .[28] Decoherence of quantum Markov semigroups. Ann. Inst. H. Poincaré Probab. Statist. 41 (3) (2005) 349–373. | Numdam | MR | Zbl
.[29] Quantum diffusions on the rotation algebras and the quantum Hall effect326–333. L. Accardi and W. von Waldenfels (Eds). Lecture Notes in Mathematics 1442. Springer, Berlin, 1990. | MR | Zbl
.[30] Quantum Stochastic Processes and Noncommutative Geometry. Cambridge Univ. Press, Cambridge, 2007. | MR | Zbl
and .Cité par Sources :