Nous considérons des marches aléatoires biaisées sur deux arbres de Galton–Watson sans feuilles
Consider biased random walks on two Galton–Watson trees without leaves having progeny distributions
Mots-clés : random walk in random environment, Galton–Watson tree, speed, stochastic domination
@article{AIHPB_2015__51_1_304_0, author = {Mehrdad, Behzad and Sen, Sanchayan and Zhu, Lingjiong}, title = {The speed of a biased walk on a {Galton{\textendash}Watson} tree without leaves is monotonic with respect to progeny distributions for high values of bias}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {304--318}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP573}, mrnumber = {3300972}, zbl = {1314.60160}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP573/} }
TY - JOUR AU - Mehrdad, Behzad AU - Sen, Sanchayan AU - Zhu, Lingjiong TI - The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 304 EP - 318 VL - 51 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP573/ DO - 10.1214/13-AIHP573 LA - en ID - AIHPB_2015__51_1_304_0 ER -
%0 Journal Article %A Mehrdad, Behzad %A Sen, Sanchayan %A Zhu, Lingjiong %T The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 304-318 %V 51 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP573/ %R 10.1214/13-AIHP573 %G en %F AIHPB_2015__51_1_304_0
Mehrdad, Behzad; Sen, Sanchayan; Zhu, Lingjiong. The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 304-318. doi : 10.1214/13-AIHP573. https://www.numdam.org/articles/10.1214/13-AIHP573/
[1] Speed of the biased random walk on a Galton–Watson tree. Probab. Theory Related Fields. To appear, 2014. DOI:10.1007/s00440-013-0515-y. | DOI | MR | Zbl
.[2] Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790. | MR | Zbl
.[3] Lyons–Pemantle–Peres monotonicity problem for high biases. Comm Pure Appl. Math. 67 (2014) 519–530. | DOI | MR | Zbl
, and .[4] On the limit of a supercritical branching process. J. Appl. Probab. 25 (1988) 215–228. | DOI | MR | Zbl
.[5] A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 (1966) 1211–1223. | DOI | MR | Zbl
and .[6] Random walks and percolation on trees. Ann. Probab. 18 (1990) 931–958. | DOI | MR | Zbl
.[7] Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Erg. Theory Dynam. Syst. 15 (1995) 593–619. | DOI | MR | Zbl
, and .[8] Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 254–268. | DOI | MR | Zbl
, and .
[9] Conceptual proofs of
[10] Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin, 2004. | MR | Zbl
.Cité par Sources :