The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 304-318.

Nous considérons des marches aléatoires biaisées sur deux arbres de Galton–Watson sans feuilles GW(P1) et GW(P2) ayant des lois de reproduction respectivement P1 et P2, deux lois supportées par les entiers positifs telles que P1 domine stochastiquement P2. Nous prouvons que la vitesse de la marche sur GW(P1) est supérieure ou égale á celle sur GW(P2) si le biais est plus grand qu’un seuil dépendant de P1 et P2. Ceci répond partiellement á une question posée par Ben Arous, Fribergh et Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).

Consider biased random walks on two Galton–Watson trees without leaves having progeny distributions P1 and P2 (GW(P1) and GW(P2)) where P1 and P2 are supported on positive integers and P1 dominates P2 stochastically. We prove that the speed of the walk on GW(P1) is bigger than the same on GW(P2) when the bias is larger than a threshold depending on P1 and P2. This partially answers a question raised by Ben Arous, Fribergh and Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).

DOI : 10.1214/13-AIHP573
Classification : 60K37, 60J80, 60G50
Mots-clés : random walk in random environment, Galton–Watson tree, speed, stochastic domination
@article{AIHPB_2015__51_1_304_0,
     author = {Mehrdad, Behzad and Sen, Sanchayan and Zhu, Lingjiong},
     title = {The speed of a biased walk on a {Galton{\textendash}Watson} tree without leaves is monotonic with respect to progeny distributions for high values of bias},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {304--318},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {1},
     year = {2015},
     doi = {10.1214/13-AIHP573},
     mrnumber = {3300972},
     zbl = {1314.60160},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/13-AIHP573/}
}
TY  - JOUR
AU  - Mehrdad, Behzad
AU  - Sen, Sanchayan
AU  - Zhu, Lingjiong
TI  - The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 304
EP  - 318
VL  - 51
IS  - 1
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/13-AIHP573/
DO  - 10.1214/13-AIHP573
LA  - en
ID  - AIHPB_2015__51_1_304_0
ER  - 
%0 Journal Article
%A Mehrdad, Behzad
%A Sen, Sanchayan
%A Zhu, Lingjiong
%T The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 304-318
%V 51
%N 1
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/13-AIHP573/
%R 10.1214/13-AIHP573
%G en
%F AIHPB_2015__51_1_304_0
Mehrdad, Behzad; Sen, Sanchayan; Zhu, Lingjiong. The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 304-318. doi : 10.1214/13-AIHP573. https://www.numdam.org/articles/10.1214/13-AIHP573/

[1] E. Aïdékon. Speed of the biased random walk on a Galton–Watson tree. Probab. Theory Related Fields. To appear, 2014. DOI:10.1007/s00440-013-0515-y. | DOI | MR | Zbl

[2] K. B. Athreya. Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790. | MR | Zbl

[3] G. Ben Arous, A. Fribergh and V. Sidoravicius. Lyons–Pemantle–Peres monotonicity problem for high biases. Comm Pure Appl. Math. 67 (2014) 519–530. | DOI | MR | Zbl

[4] N. H. Bingham. On the limit of a supercritical branching process. J. Appl. Probab. 25 (1988) 215–228. | DOI | MR | Zbl

[5] H. Kesten and B. P. Stigum. A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 (1966) 1211–1223. | DOI | MR | Zbl

[6] R. Lyons. Random walks and percolation on trees. Ann. Probab. 18 (1990) 931–958. | DOI | MR | Zbl

[7] R. Lyons, R. Pemantle and Y. Peres. Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Erg. Theory Dynam. Syst. 15 (1995) 593–619. | DOI | MR | Zbl

[8] R. Lyons, R. Pemantle and Y. Peres. Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 254–268. | DOI | MR | Zbl

[9] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125–1138. | DOI | MR | Zbl

[10] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin, 2004. | MR | Zbl

Cité par Sources :