Nous construisons des solutions stationnaires de certaines équations différentielles stochastiques libres à coefficients opérateurs non-bornés. Comme application, nous montrons l’égalité des dimensions entropiques libres microcanonique et non-microcanonique sous l’hypothèse d’une variable conjuguée Lipschitz pour les générateurs d’un espace de probabilité non-commutatif inscriptible dans une ultrapuissance du facteur hyperfini. Cette hypothèse de variable conjuguée Lipschitz inclut le cas de variables aléatories -Gaussiennes pour de petits par exemple .
We get stationary solutions of a free stochastic partial differential equation. As an application, we prove equality of non-microstate and microstate free entropy dimensions under a Lipschitz like condition on conjugate variables, assuming also the von Neumann algebra embeddable. This includes an -tuple of -Gaussian random variables e.g. for .
Mots clés : free stochastic partial differential equations, lower bounds on microstate free entropy dimension, free probability, $q$-gaussian variables
@article{AIHPB_2014__50_4_1404_0, author = {Dabrowski, Yoann}, title = {A free stochastic partial differential equation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1404--1455}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP548}, mrnumber = {3270000}, zbl = {06377560}, language = {en}, url = {http://www.numdam.org/articles/10.1214/13-AIHP548/} }
TY - JOUR AU - Dabrowski, Yoann TI - A free stochastic partial differential equation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1404 EP - 1455 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/13-AIHP548/ DO - 10.1214/13-AIHP548 LA - en ID - AIHPB_2014__50_4_1404_0 ER -
%0 Journal Article %A Dabrowski, Yoann %T A free stochastic partial differential equation %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1404-1455 %V 50 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/13-AIHP548/ %R 10.1214/13-AIHP548 %G en %F AIHPB_2014__50_4_1404_0
Dabrowski, Yoann. A free stochastic partial differential equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1404-1455. doi : 10.1214/13-AIHP548. http://www.numdam.org/articles/10.1214/13-AIHP548/
[1] Strong solidity of the -Gaussian algebras for all . Available at arXiv:1110.4918.
.[2] Large deviation bounds for matrix Brownian motion. Invent. Math. 152 (2003) 433-459. | MR | Zbl
, and .[3] Stochastic calculus with respect to free Brownian motion. Probab. Theory Related Fields 112 (1998) 373-409. | MR | Zbl
and .[4] A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Func. Anal. 11 (2001) 1125-1138. | MR | Zbl
and .[5] Ultracontractivity and strong Sobolev inequality for -Ornstein-Uhlenbeck semigroup (). Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1998) 203-220. | MR | Zbl
.[6] -Gaussian processes: Non-commutative and classical aspects. Commun. Math. Phys. 185 (1997) 129-154. | MR | Zbl
, and .[7] An example of a generalized Brownian motion. Commun. Math. Phys. 137 (1991) 519-531. | MR | Zbl
and .[8] Sufficient conditions for conservativity of minimal quantum dynamical semigroups. J. Funct. Anal. 153 (1998) 382-404. | MR | Zbl
and .[9] Derivations as square roots of Dirichlet forms. J. Funct. Anal. 201 (2003) 78-120. | MR | Zbl
and .[10] -homology for von Neumann algebras. J. Reine Angew. Math. 586 (2005) 125-168. | MR | Zbl
and .[11] A note about proving non- under a finite non-microstates free Fisher information Assumption. J. Funct. Anal. 258 (2008) 3662-3674. | MR | Zbl
.[12] A non-commutative path space approach to stationary free stochastic differential equations. Preprint, 2010, available at arXiv:1006.4351. | MR
.[13] Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR
and .[14] Non-commutative symmetric Markov semigroups. Math. Z. 210 (1992) 379-411. | Zbl
and .[15] Stochastic integration with respect to Brownian motion. Probab. Theory Related Fields 125 (2003) 77-95. | MR | Zbl
.[16] On the Fock representation of the -commutation relations. J. Reine Angew. Math. 440 (1993) 201-212. | MR | Zbl
and .[17] H-P quantum stochastic differential equations. In Non-Commutativity, Infinite-Dimensionality, and Probability at the Crossroads. The Proceedings of the RIMS Workshop on Infinite Dimensional Analysis and Quantum Probability: Kyoto, Japan, 20-22 November, 2001 51-96. N. Obata, T. Matsui and A. Hora (Eds). World Scientific, River Edge, NJ, 2002. | MR | Zbl
.[18] Mild solutions of quantum stochastic differential equations. Electron. Commun. Probab. 5 (2000) 158-171. | MR | Zbl
and .[19] Free diffusions and matrix models with strictly convex interaction. Geom. Func. Anal. 18 (2007) 1875-1916. | MR | Zbl
and .[20] Perturbation Theory for Linear Operators, 2nd edition. Springer-Verlag, Berlin, 1980. | Zbl
.[21] Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations. Springer, Berlin, 2007. | MR | Zbl
.[22] An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives. R. A. Carmona and B. L. Rozovskii (Eds). Mathematical Surveys and Monographs 64. American Mathetical Society, Providence, 1999. | MR | Zbl
.[23] Stochastic evolution equations (in Russian). Current Problems in Mathematics 14 (1979) 71-147. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow. | MR | Zbl
and .[24] Continuous Time Markov Processes: An Introduction. American Mathetical Society, Providence, 2010. | MR | Zbl
.[25] -Invariants: Theory and Applications to Geometry and K-Theory. Springer, Berlin, 2002. | Zbl
.[26] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer, Berlin, 1992. | Zbl
and .[27] Non-microstate free entropy dimension for groups. Geom. Func. Anal. 15 (2005) 476-490. | MR | Zbl
and .[28] Non injectivity of the -deformed von Neumann algebra. Math. Ann. 330 (2004) 17-38. | MR | Zbl
.[29] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. | MR | Zbl
and .[30] Sur des équations aux dérivés partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275 (1972) A101-A103. | MR | Zbl
.[31] Équations aux dérivées partielles stochastiques de type monotone. In Séminaire sur les Équations aux Dérivées Partielles (1974-1975), III Exp. No. 2 1-10. Collège de France, Paris, 1975. | MR | Zbl
.[32] A 1-cohomology characterisation of Property (T) in von Neumann algebras. Pacific J. Math. 243 (2009) 181-199. | MR | Zbl
.[33] -rigidity in von Neumann algebras. Invent. Math. 175 (2009) 417-433. | MR | Zbl
.[34] A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1905. Springer, Berlin, 2007. | MR | Zbl
and .[35] Stochastic Evolution Systems. Kluwer Academic, Dordrecht, 1990. | MR
.[36] Strong Feller semigroups on -algebras. J. Operator Theory 42 (1999) 83-102. | MR | Zbl
.[37] Some estimates for non-microstate free entropy dimension with applications to -semicircular families. Int. Math. Res. Not. 51 (2004) 2757-2772. | MR | Zbl
.[38] Remarks on free entropy dimension. In Operator Algebras Abel Symposia, Volume 1 249-257. Springer, Berlin, 2006. | MR | Zbl
.[39] Lower estimates on microstate free entropy dimension. Anal. PDE 2 (2009) 119-146. | MR | Zbl
.[40] Gaussian random matrix models for -deformed Gaussian variables. Comm. Math. Phys. 216 (2001) 515-537. | Zbl
.[41] On the regularity of the solutions of stochastic partial differential equations. In Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences 69 71-75. Springer, Berlin, 1985. | MR | Zbl
.[42] The analogs of entropy and of Fisher's information measure in free probability theory, II. Invent. Math. 118 (1994) 411-440. | MR | Zbl
.[43] The analogs of entropy and of Fisher's information measure in free probability theory, V: Non commutative Hilbert Transforms. Invent. Math. 132 (1998) 189-227. | MR | Zbl
.[44] The analogs of entropy and of Fisher's information measure in free probability theory, VI: Liberation and mutual free information. Adv. Math. 146 (1999) 101-166. | MR | Zbl
.[45] Free entropy. Bull. Lond. Math. Soc. 34 (2002) 257-278. | MR | Zbl
.[46] A note on cyclic gradients. Indiana Univ. Math. J. 49 (2000) 837-841. | MR | Zbl
.[47] An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV-1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin, 1986. | MR | Zbl
.[48] Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal. 139 (1996) 261-300. | MR | Zbl
.[49] Realizability of a model in infinite statistics. Commun. Math. Phys. 147 (1992) 199-210. | MR | Zbl
.Cité par Sources :