Nous calculons presque sûrement la dimension de Hausdorff de l’ensemble de recouvrement aléatoire
We calculate the almost sure Hausdorff dimension of the random covering set
Mots-clés : random covering set, Hausdorff dimension, affine Cantor set
@article{AIHPB_2014__50_4_1371_0, author = {J\"arvenp\"a\"a, Esa and J\"arvenp\"a\"a, Maarit and Koivusalo, Henna and Li, Bing and Suomala, Ville}, title = {Hausdorff dimension of affine random covering sets in torus}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1371--1384}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP556}, mrnumber = {3269998}, zbl = {06377558}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP556/} }
TY - JOUR AU - Järvenpää, Esa AU - Järvenpää, Maarit AU - Koivusalo, Henna AU - Li, Bing AU - Suomala, Ville TI - Hausdorff dimension of affine random covering sets in torus JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1371 EP - 1384 VL - 50 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP556/ DO - 10.1214/13-AIHP556 LA - en ID - AIHPB_2014__50_4_1371_0 ER -
%0 Journal Article %A Järvenpää, Esa %A Järvenpää, Maarit %A Koivusalo, Henna %A Li, Bing %A Suomala, Ville %T Hausdorff dimension of affine random covering sets in torus %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1371-1384 %V 50 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP556/ %R 10.1214/13-AIHP556 %G en %F AIHPB_2014__50_4_1371_0
Järvenpää, Esa; Järvenpää, Maarit; Koivusalo, Henna; Li, Bing; Suomala, Ville. Hausdorff dimension of affine random covering sets in torus. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1371-1384. doi : 10.1214/13-AIHP556. https://www.numdam.org/articles/10.1214/13-AIHP556/
[1] A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164 (2006) 971-992. | MR | Zbl
and .[2] Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. 129 (4) (2005) 275-317. | MR | Zbl
and .[3] Séries de Fourier aléatoirement bornées, continues, uniformément convergentes. Ann. Sci. École Norm. Sup. (3) 82 (1965) 131-179. | Numdam | MR | Zbl
.[4] On randomly placed arcs on the circle. In Recent Developments in Fractals and Related Fields 343-351. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, 2010. | MR | Zbl
.[5] On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. USA 42 (1956) 199-203. | MR | Zbl
.
[6] Recouvrement du tore
[7] Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 221-254. | MR | Zbl
.[8] The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103 (1988) 339-350. | MR | Zbl
.[9] How many intervals cover a point in Dvoretzky covering? Israel J. Math. 131 (2002) 157-184. | MR | Zbl
.[10] Rareté des intervalles recouvrant un point dans un recouvrement aléatoire. Ann. Inst. Henri Poincaré Probab. Stat. 29 (1993) 453-466. | Numdam | MR | Zbl
and .[11] A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. London Math. Soc. (3) 107 (2013) 1173-1219. | MR
, and .[12] On the covering by small random intervals. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 125-131. | Numdam | MR | Zbl
and .[13] On the covering of small sets by random intervals. Quart. J. Math. Oxford Ser. (2) 24 (1973) 427-432. | MR | Zbl
.[14] On the asymptotic behaviour of sample spacings. Math. Proc. Cambridge Philos. Soc. 90 (2) (1985) 293-303. | MR | Zbl
.[15] Coverings of metric spaces with randomly placed balls. Math. Scand. 32 (1973) 169-186. | MR | Zbl
.[16] Random coverings in several dimensions. Acta Math. 156 (1986) 83-118. | MR | Zbl
.[17] Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab. 36 (2008) 739-764. | MR | Zbl
and .[18] Sur le recouvrement d'un cercle par des arcs disposés au hasard. C. R. Acad. Sci. Paris 248 (1956) 184-186. | MR | Zbl
.[19] Some Random Series of Functions. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. | MR | Zbl
.[20] Recouvrements aléatoires et théorie du potentiel. Colloq. Math. 60/61 (1990) 387-411. | MR | Zbl
.[21] Random coverings and multiplicative processes. In Fractal Geometry and Stochastics II 125-146. Progr. Probab. 46. Birkhäuser, Basel, 2000. | MR | Zbl
.[22] Hitting probabilities of the random covering sets. In Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics 307-323. Contemp. Math. 601. Amer. Math. Soc., Providence, RI, 2013. | MR
, and .[23] Diophantine approximation by orbits of Markov maps. Ergodic Theory Dynam. Systems 33 (2013) 585-608. | MR | Zbl
and .[24] On Dvoretzky coverings for the circle. Z. Wahrsch. Verw. Gebiete 22 (1972) 158-160. | MR | Zbl
.[25] Renewal sets and random cutouts. Z. Wahrsch. Verw. Gebiete 22 (1972) 145-157. | MR | Zbl
.[26] Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
.[27] On the packing dimension and category of exceptional sets of orthogonal projections. Available at http://arxiv.org/abs/1204.2121v3.
.[28] Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 23 (1972) 163-170. | MR | Zbl
.[29] Covering the circle with random arcs. Israel J. Math. 11 (1972) 328-345. | MR | Zbl
.- QUENCHED CENTRAL LIMIT THEOREM FOR DVORETZKY COVERING, Bulletin of the Australian Mathematical Society, Volume 111 (2025) no. 2, p. 368 | DOI:10.1017/s0004972724001230
- The Ekström–Persson conjecture regarding random covering sets, Journal of the London Mathematical Society, Volume 111 (2025) no. 1 | DOI:10.1112/jlms.70058
- On the intersection of dynamical covering sets with fractals, Mathematische Zeitschrift, Volume 301 (2022) no. 1, p. 485 | DOI:10.1007/s00209-021-02924-2
- Random covering sets in metric space with exponentially mixing property, Statistics Probability Letters, Volume 168 (2021), p. 108922 | DOI:10.1016/j.spl.2020.108922
- Dimension of Random Limsup Sets, The American Mathematical Monthly, Volume 126 (2019) no. 9, p. 816 | DOI:10.1080/00029890.2019.1640528
- Hausdorff dimension of random limsup sets, Journal of the London Mathematical Society, Volume 98 (2018) no. 3, p. 661 | DOI:10.1112/jlms.12158
- Inhomogeneous random coverings of topological Markov shifts, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 165 (2018) no. 2, p. 341 | DOI:10.1017/s0305004117000512
- Dimensions of random covering sets in Riemann manifolds, The Annals of Probability, Volume 46 (2018) no. 3 | DOI:10.1214/17-aop1210
- Hitting probabilities of random covering sets in tori and metric spaces, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/16-ejp4658
- Random cutout sets with spatially inhomogeneous intensities, Israel Journal of Mathematics, Volume 220 (2017) no. 2, p. 899 | DOI:10.1007/s11856-017-1524-9
- Random Covering Sets, Hitting Probabilities and Variants of the Covering Problem, Recent Developments in Fractals and Related Fields (2017), p. 175 | DOI:10.1007/978-3-319-57805-7_8
- Dimensions of Random Covering Sets, Fractal Geometry and Stochastics V, Volume 70 (2015), p. 317 | DOI:10.1007/978-3-319-18660-3_16
Cité par 12 documents. Sources : Crossref