On considère une nouvelle distance entre les mesures de probabilité sur
We introduce a new transport distance between probability measures on
Mots-clés : jump process, Lévy process, gradient flow, entropy, optimal transport
@article{AIHPB_2014__50_3_920_0, author = {Erbar, Matthias}, title = {Gradient flows of the entropy for jump processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {920--945}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/12-AIHP537}, mrnumber = {3224294}, zbl = {1311.60091}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP537/} }
TY - JOUR AU - Erbar, Matthias TI - Gradient flows of the entropy for jump processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 920 EP - 945 VL - 50 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP537/ DO - 10.1214/12-AIHP537 LA - en ID - AIHPB_2014__50_3_920_0 ER -
%0 Journal Article %A Erbar, Matthias %T Gradient flows of the entropy for jump processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 920-945 %V 50 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP537/ %R 10.1214/12-AIHP537 %G en %F AIHPB_2014__50_3_920_0
Erbar, Matthias. Gradient flows of the entropy for jump processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 920-945. doi : 10.1214/12-AIHP537. https://www.numdam.org/articles/10.1214/12-AIHP537/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition. Lectures in Mathematics. Birkhäuser, Basel, 2008. | MR | Zbl
, and .[2] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint, 2011. Available at arXiv:1106.2090. | MR
, and .[3] Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 (2009) 517-564. | MR | Zbl
, and .[4] Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge, 2004. | MR | Zbl
.[5] Diffusions hypercontractives. In Séminaire de Probabilités XIX 177-206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR | Zbl
and .[6] Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963-1999. | MR | Zbl
, , and .[7] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | MR | Zbl
and .[8] Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[9] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989. | MR | Zbl
.[10] The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. of Math. (2) 174 (2011) 1163-1187. | MR | Zbl
and .
[11] Heat kernel estimates for stable-like processes on
[12] Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203 (2012) 969-1008. | MR | Zbl
, , and .[13] Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104-1122. | MR | Zbl
and .[14] A new class of transport distances between measures. Calc. Var. Partial Differential Equations 34 (2009) 193-231. | MR | Zbl
, and .[15] The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1-23. | Numdam | MR | Zbl
.[16] Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206 (2012) 997-1038. | MR | Zbl
and .[17] Wasserstein space over the Wiener space. Probab. Theory Related Fields 146 (2010) 535-565. | MR | Zbl
, and .[18] On the heat flow on metric measure spaces: Existence, uniqueness and stability. Calc. Var. Partial Differential Equations 39 (2010) 101-120. | MR | Zbl
.[19] Heat flow on Alexandrov spaces. Comm. Pure Appl. Math. 66 (2013) 307-331. | MR | Zbl
, and .[20] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | MR | Zbl
, and .[21] Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009) 903-991. | MR | Zbl
and .[22] Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250-2292. | MR | Zbl
.[23] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. | MR | Zbl
.[24] Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations 48 (2013) 1-31. | MR | Zbl
.[25] Heat flow on Finsler manifolds. Comm. Pure Appl. Math. 62 (2009) 1386-1433. | MR | Zbl
and .[26] The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | MR | Zbl
.[27] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. | MR | Zbl
and .[28] On the geometry of metric measure spaces. I. Acta Math. 196 (2006) 65-131. | MR | Zbl
.[29] On the geometry of metric measure spaces. II. Acta Math. 196 (2006) 133-177. | MR | Zbl
.[30] Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. | MR | Zbl
.Cité par Sources :