Nous étudions une chaîne de Markov en temps continu dans un environnement dynamique de conductances aléatoires dans . Nous supposons que les conductances sont stationnaires ergodiques, uniformément positives et polynomialement mélangeantes en espace et en temps. Nous montrons un principe d’invariance << quenched >> pour , et nous obtenons des bornes sur les fonctions de Green et un théorème limite local. Nous discutons aussi les liens avec les modèles d’interfaces aléatoires.
We study a continuous time random walk in an environment of dynamic random conductances in . We assume that the conductances are stationary ergodic, uniformly bounded and bounded away from zero and polynomially mixing in space and time. We prove a quenched invariance principle for , and obtain Green’s functions bounds and a local limit theorem. We also discuss a connection to stochastic interface models.
Mots-clés : random conductance model, dynamic environment, invariance principle, ergodic, corrector, point of view of the particle, stochastic interface model
@article{AIHPB_2014__50_2_352_0, author = {Andres, Sebastian}, title = {Invariance principle for the random conductance model with dynamic bounded conductances}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {352--374}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP527}, mrnumber = {3189075}, zbl = {1290.60109}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP527/} }
TY - JOUR AU - Andres, Sebastian TI - Invariance principle for the random conductance model with dynamic bounded conductances JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 352 EP - 374 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP527/ DO - 10.1214/12-AIHP527 LA - en ID - AIHPB_2014__50_2_352_0 ER -
%0 Journal Article %A Andres, Sebastian %T Invariance principle for the random conductance model with dynamic bounded conductances %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 352-374 %V 50 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP527/ %R 10.1214/12-AIHP527 %G en %F AIHPB_2014__50_2_352_0
Andres, Sebastian. Invariance principle for the random conductance model with dynamic bounded conductances. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 352-374. doi : 10.1214/12-AIHP527. http://www.numdam.org/articles/10.1214/12-AIHP527/
[1] Invariance principle for the random conductance model. Preprint. Probab. Theory Related Fields. To appear. Available at DOI:10.1007/s00440-012-0435-2. | MR
, , and .[2] Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 205-224. | MR | Zbl
and .[3] Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR | Zbl
and .[4] Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 (2009) 1-16. | MR | Zbl
and .[5] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83-120. | MR | Zbl
and .[6] Recent progress on the random concuctance model. Probab. Surv. 8 (2011) 294-373. | MR | Zbl
.[7] Functional CLT for random walk among bounded random conductances. Electron J. Probab. 12 (2007) 1323-1348. | MR | Zbl
and .[8] Helffer-Sjöstrand representation for conservative dynamics. Markov Process. Related Fields 18 (2012) 71-88. | MR | Zbl
and .[9] Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133-156. | MR | Zbl
, and .[10] Discrete-time random motion in a continuous random medium. Stochastic Process. Appl. 119 (2009) 3285-3299. | MR | Zbl
, and .[11] On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to interface model. Probab. Theory Related Fields 133 (2005) 358-390. | MR | Zbl
and .[12] Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | MR | Zbl
and .[13] Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 (2009) 245-251. | MR | Zbl
and .[14] Probability: Theory and Examples, 4th edition. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
.[15] Markov Processes. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1986. | MR | Zbl
and .[16] Stochastic Interface Models. In Ecole d'été de probabilités de Saint Flour 2003 103-274. Lecture Notes in Mathematics 1869. Springer, Berlin, 2005. | MR | Zbl
.[17] Motion by mean curvature from the Ginzburg-Landau interface models. Commun. Math. Phys. 185 (1997) 1-36. | MR | Zbl
and .[18] Equilibrium fluctuations for interface model. Ann. Probab. 29 (2001) 1138-1172. | MR | Zbl
, and .[19] On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74 (1994) 349-409. | MR | Zbl
and .[20] Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 43-57. | MR | Zbl
and .[21] Fluctuations in Markov processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften 345. Springer, Heidelberg, 2012. | MR
, and .[22] Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR | Zbl
.[23] Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR | Zbl
and .[24] Variance decay for functionals of the environment viewed by the particle. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 294-327. | Numdam | MR | Zbl
.[25] An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299-314. | MR | Zbl
and .[26] Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 373-420. | Numdam | MR | Zbl
and .[27] Limit theorems for random walks in dynamic random environment. Preprint. Available at arXiv:1106.4181v2. | Zbl
and ,[28] Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973. | MR | Zbl
.[29] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR | Zbl
and .Cité par Sources :