Cet article traite du problème de l’estimation d’une fonction définie sur lorsque est grand en utilisant des approximations de par des fonctions composées de la forme . Notre solution est fondée sur la sélection de modèle et conduit, pour résoudre ce problème, à une approche très générale tant sur les possibilités de choix des fonctions et que sur les cadres statistiques d’application. En particulier, et entre autres exemples, nous considérons l’approximation de par des fonctions additives, des modèles de type “single” ou “multiple index”, des réseaux de neurones, ou des mélanges de densités gaussiennes lorsque est elle-même une densité. Nous étudions également le cas où est exactement de la forme pour des fonctions et appartenant à des classes de régularités qui peuvent être anisotropes. Dans ce cas, notre approche conduit à un estimateur complètement adaptatif par rapport aux régularités de et .
We consider the problem of estimating a function on for large values of by looking for some best approximation of by composite functions of the form . Our solution is based on model selection and leads to a very general approach to solve this problem with respect to many different types of functions and statistical frameworks. In particular, we handle the problems of approximating by additive functions, single and multiple index models, artificial neural networks, mixtures of Gaussian densities (when is a density) among other examples. We also investigate the situation where for functions and belonging to possibly anisotropic smoothness classes. In this case, our approach leads to a completely adaptive estimator with respect to the regularities of and .
Mots-clés : curve estimation, model selection, composite functions, adaptation, single index model, artificial neural networks, gaussian mixtures
@article{AIHPB_2014__50_1_285_0, author = {Baraud, Yannick and Birg\'e, Lucien}, title = {Estimating composite functions by model selection}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {285--314}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP516}, mrnumber = {3161532}, zbl = {1281.62093}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP516/} }
TY - JOUR AU - Baraud, Yannick AU - Birgé, Lucien TI - Estimating composite functions by model selection JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 285 EP - 314 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP516/ DO - 10.1214/12-AIHP516 LA - en ID - AIHPB_2014__50_1_285_0 ER -
%0 Journal Article %A Baraud, Yannick %A Birgé, Lucien %T Estimating composite functions by model selection %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 285-314 %V 50 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP516/ %R 10.1214/12-AIHP516 %G en %F AIHPB_2014__50_1_285_0
Baraud, Yannick; Birgé, Lucien. Estimating composite functions by model selection. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 285-314. doi : 10.1214/12-AIHP516. http://www.numdam.org/articles/10.1214/12-AIHP516/
[1] Adaptation to anisotropy and inhomogeneity via dyadic piecewise polynomial selection. Math. Methods Statist. 21 (2012) 1-28. | MR
.[2] Estimator selection with respect to Hellinger-type risks. Probab. Theory Related Fields 151 (2011) 353-401. | MR
.[3] Model selection for (auto-)regression with dependent data. ESAIM Probab. Stat. 5 (2001) 33-49. | Numdam | MR | Zbl
, and .[4] Gaussian model selection with an unknown variance. Ann. Statist. 37 (2009) 630-672. | MR | Zbl
, and .[5] Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. | MR | Zbl
, and .[6] Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 (1993) 930-945. | MR | Zbl
.[7] Approximation and estimation bounds for artificial neural networks. Machine Learning 14 (1994) 115-133. | Zbl
.[8] Model selection via testing: An alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 273-325. | Numdam | MR
.[9] Model selection for Poisson processes. In Asymptotics: Particles, Processes and Inverse Problems, Festschrift for Piet Groeneboom 32-64. E. Cator, G. Jongbloed, C. Kraaikamp, R. Lopuhaä and J. Wellner (Eds). IMS Lecture Notes - Monograph Series 55. Inst. Math. Statist., Beachwood, OH, 2007. | MR | Zbl
.[10] Model selection for density estimation with -loss. Probab. Theory Related Fields. To appear. Available at http://arxiv.org/abs/1102.2818. | Zbl
.[11] Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (2001) 203-268. | MR | Zbl
and .[12] Multidimensional spline approximation. SIAM J. Numer. Anal. 17 (1980) 380-402. | MR | Zbl
, and .[13] Constructive Approximation. Springer, Berlin, 1993. | MR | Zbl
and .[14] A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C-23 (1974) 881-890. | Zbl
and .[15] Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal. 12 (2002) 179-208. | MR | Zbl
.[16] Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions. Ann. Statist. 35 (2007) 2589-2619. | MR | Zbl
and .[17] Projection pursuit (with discussion). Ann. Statist. 13 (1985) 435-525. | MR | Zbl
.[18] Nonparametric estimation of composite functions. Ann. Statist. 37 (2009) 1360-1404. | MR | Zbl
, and .[19] A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM Probab. Stat. 15 (2011) 41-68. | Numdam | MR
and .[20] Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040-1053. | MR | Zbl
.Cité par Sources :