Soit une marche aléatoire centrée, nous considérons la suite de ses sommes partielles . Nous supposons que est dans le domaine d’attraction normale d’une loi -stable avec . En supposant que est soit exponentielle à droite (i.e. ), soit continue à droite (i.e. ), nous prouvons que
Take a centered random walk and consider the sequence of its partial sums . Suppose is in the domain of normal attraction of an -stable law with . Assuming that is either right-exponential (i.e. for some and all ) or right-continuous (skip free), we prove that
Mots clés : integrated random walk, persistence, one-sided exit probability, unilateral small deviations, area of random walk, Sparre-Andersen theorem, stable excursion, area of excursion
@article{AIHPB_2014__50_1_195_0, author = {Vysotsky, Vladislav}, title = {Positivity of integrated random walks}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {195--213}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP487}, mrnumber = {3161528}, zbl = {1293.60053}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP487/} }
TY - JOUR AU - Vysotsky, Vladislav TI - Positivity of integrated random walks JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 195 EP - 213 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP487/ DO - 10.1214/12-AIHP487 LA - en ID - AIHPB_2014__50_1_195_0 ER -
Vysotsky, Vladislav. Positivity of integrated random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 195-213. doi : 10.1214/12-AIHP487. http://www.numdam.org/articles/10.1214/12-AIHP487/
[1] Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1) (2013) 236-251. | Numdam | MR | Zbl
and .[2] Lévy Processes. Cambridge University Press, New York, 1996. | MR | Zbl
.[3] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR | Zbl
.[4] On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480-485. | MR | Zbl
.[5] Pinning and wetting transition for ()-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008) 2388-2433. | MR | Zbl
and .[6] Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3) (2013) 873-884. | Numdam | MR | Zbl
, and .[7] Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351-360. | MR | Zbl
.[8] One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | MR | Zbl
.[9] On the rate of convergence to a stable law. Theor. Probab. Appl. 25 (1980) 180-187. | MR | Zbl
.[10] An Introduction to Probability Theory and Its Applications 2. Wiley, New York, 1966. | MR | Zbl
.[11] Fluctuations of random walk in and storage systems. Adv. in Appl. Prob. 9 (1977) 566-587. | MR | Zbl
and .[12] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR | Zbl
and .[13] An asymptotic formula for the Kolmogorov Diffusion and a refinement of Sinai's estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A 70 (1994) 271-276. | MR | Zbl
and .[14] Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas. Probab. Surveys 4 (2007) 80-145. | MR | Zbl
.[15] Ratio theorems for random walks II. J. Anal. Math. 11 (1963) 323-379. | MR | Zbl
.[16] Persistence in nonequilibrium systems. Current Sci. 77 (1999) 370-375.
.[17] On the asymptotic behaviour of one-sided large deviation probabilities. Theory Probab. Appl. 26 (1982) 362-366. | Zbl
.[18] A bivariate stable characterization and domains of attraction. J. Multivariate Anal. 9 (1979) 206-221. | MR | Zbl
and .[19] A class of conditional limit theorems related to ruin problem. Ann. Probab. 11 (1983) 40-45. | MR | Zbl
.[20] Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90 (1992) 219-241. | MR | Zbl
.[21] Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177-217. | MR | Zbl
and .[22] Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab. 18 (2008) 1026-1058. | MR | Zbl
.[23] On the probability that integrated random walks stay positive. Stochastic Process. Appl. 120 (2010) 1178-1193. | MR | Zbl
.[24] One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
.Cité par Sources :