Nous considérons une famille d’équations de la chaleur stochastique de la forme
We consider a family of nonlinear stochastic heat equations of the form
Mots-clés : The stochastic heat equation, singular initial data
@article{AIHPB_2014__50_1_136_0, author = {Conus, Daniel and Joseph, Mathew and Khoshnevisan, Davar and Shiu, Shang-Yuan}, title = {Initial measures for the stochastic heat equation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {136--153}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP505}, mrnumber = {3161526}, zbl = {1288.60077}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP505/} }
TY - JOUR AU - Conus, Daniel AU - Joseph, Mathew AU - Khoshnevisan, Davar AU - Shiu, Shang-Yuan TI - Initial measures for the stochastic heat equation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 136 EP - 153 VL - 50 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP505/ DO - 10.1214/12-AIHP505 LA - en ID - AIHPB_2014__50_1_136_0 ER -
%0 Journal Article %A Conus, Daniel %A Joseph, Mathew %A Khoshnevisan, Davar %A Shiu, Shang-Yuan %T Initial measures for the stochastic heat equation %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 136-153 %V 50 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP505/ %R 10.1214/12-AIHP505 %G en %F AIHPB_2014__50_1_136_0
Conus, Daniel; Joseph, Mathew; Khoshnevisan, Davar; Shiu, Shang-Yuan. Initial measures for the stochastic heat equation. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 136-153. doi : 10.1214/12-AIHP505. https://www.numdam.org/articles/10.1214/12-AIHP505/
[1] The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 (1994) 1377-1402. | MR | Zbl
and .[2] Macdonald processes. Preprint, 2012. Available at http://arxiv.org/abs/1111.4408. | MR
and .[3] Martingale transforms. Ann. Math. Statist. 37 (1966) 1494-1504. | MR | Zbl
.[4] Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II 223-240. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl
, and .[5] Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 (1970) 249-304. | MR | Zbl
and .
[6]
[7] Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) vii + 129. | MR | Zbl
and .
[8] Parabolic Anderson model driven by space-time white noise in
[9] Weak nonmild solutions to some SPDEs. Illinois J. Math. 54(4) (2010) 1329-1341. | MR | Zbl
and .[10] On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear. Available at http://arxiv.org/abs/1104.0189. | MR | Zbl
, and .[11] Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) Paper no. 6, 29 (electronic). | MR | Zbl
.[12] Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003) Paper no. 1, 21 (electronic). | MR | Zbl
and .
[13] On the
[14] On the global maximum of the solution to a stochastic heat equation with compact-support initial data, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 895-907. | Numdam | MR | Zbl
and .[15] Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J. Probab. 14 (2009) Paper no. 12, 548-568 (electronic). | MR | Zbl
and .[16] A local time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc. 363 (2011) 2481-2515. | MR | Zbl
, and .[17] Generalized Functions, Vol. 4: Applications of harmonic analysis. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]. Translated from the Russian by Amiel Feinstein. | MR | Zbl
and .[18] On the stochastic Burgers' equation in the real line. Ann. Probab. 27 (1999) 782-802. | MR | Zbl
and .[19] Pseudo Differential Operators and Markov Processes, Vol. III. Imperial College Press, London, 2005. | MR | Zbl
.[20] Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55 (1985) 2923.
.[21] Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl
, and .[22] On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991) 225-245. | MR | Zbl
.[23] An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV - 1984 265-439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | MR | Zbl
.- The intermediate disorder regime for stable directed polymer in Poisson environment, Journal of Mathematical Analysis and Applications, Volume 542 (2025) no. 1, p. 128844 | DOI:10.1016/j.jmaa.2024.128844
- KPZ on torus: Gaussian fluctuations, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 60 (2024) no. 3 | DOI:10.1214/23-aihp1392
- Parabolic stochastic PDEs on bounded domains with rough initial conditions: moment and correlation bounds, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 12 (2024) no. 3, p. 1507 | DOI:10.1007/s40072-023-00310-z
- On Besov regularity and local time of the solution to the stochastic heat equation, Stochastics, Volume 95 (2023) no. 6, p. 1120 | DOI:10.1080/17442508.2022.2164696
- Stochastic heat equation: Numerical positivity and almost surely exponential stability, Computers Mathematics with Applications, Volume 119 (2022), p. 312 | DOI:10.1016/j.camwa.2022.05.031
- Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition, Journal of Functional Analysis, Volume 282 (2022) no. 2, p. 109290 | DOI:10.1016/j.jfa.2021.109290
- Spatial asymptotics for the Feynman–Kac formulas driven by time-dependent and space-fractional rough Gaussian fields with the measure-valued initial data, Stochastic Processes and their Applications, Volume 143 (2022), p. 106 | DOI:10.1016/j.spa.2021.10.003
- Continuity and strict positivity of the multi-layer extension of the stochastic heat equation, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp511
- Some Recent Progress on Stochastic Heat Equations, Acta Mathematica Scientia, Volume 39 (2019) no. 3, p. 874 | DOI:10.1007/s10473-019-0315-2
- Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd, Stochastic Processes and their Applications, Volume 129 (2019) no. 12, p. 5073 | DOI:10.1016/j.spa.2019.01.003
- On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 53 (2017) no. 1 | DOI:10.1214/15-aihp719
- Moment bounds for a class of fractional stochastic heat equations, The Annals of Probability, Volume 45 (2017) no. 4 | DOI:10.1214/16-aop1108
- Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation, Stochastic Partial Differential Equations: Analysis and Computations, Volume 3 (2015) no. 3, p. 360 | DOI:10.1007/s40072-015-0054-x
- Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions, The Annals of Probability, Volume 43 (2015) no. 6 | DOI:10.1214/14-aop954
Cité par 14 documents. Sources : Crossref