Dans ce travail, nous considérons un modèle de convolution multidimensionnel, pour lequel nous proposons des estimateurs à noyau anisotropes pour reconstruire la densité
In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density
Mots-clés : adaptive kernel estimator, anisotropic estimation, deconvolution, density estimation, measurement errors, multidimensional
@article{AIHPB_2013__49_2_569_0, author = {Comte, F. and Lacour, C.}, title = {Anisotropic adaptive kernel deconvolution}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {569--609}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP470}, mrnumber = {3088382}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP470/} }
TY - JOUR AU - Comte, F. AU - Lacour, C. TI - Anisotropic adaptive kernel deconvolution JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 569 EP - 609 VL - 49 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP470/ DO - 10.1214/11-AIHP470 LA - en ID - AIHPB_2013__49_2_569_0 ER -
%0 Journal Article %A Comte, F. %A Lacour, C. %T Anisotropic adaptive kernel deconvolution %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 569-609 %V 49 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP470/ %R 10.1214/11-AIHP470 %G en %F AIHPB_2013__49_2_569_0
Comte, F.; Lacour, C. Anisotropic adaptive kernel deconvolution. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 569-609. doi : 10.1214/11-AIHP470. https://www.numdam.org/articles/10.1214/11-AIHP470/
[1] Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4(3) (1998) 329-375. | MR | Zbl
and .[2] Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32(2) (2004) 181-192. | MR | Zbl
.[3] Adaptive estimation of linear functionals in the convolution model and applications. Bernoulli 15(1) (2009) 69-98. DOI:10.3150/08-BEJ146. Available at http://dx.doi.org/10.3150/08-BEJ146. | MR | Zbl
and .[4] Sharp optimality in density deconvolution with dominating bias. I. Theory Probab. Appl. 52(1) (2008) 24-39. DOI:10.1137/S0040585X97982840. Available at http://dx.doi.org/10.1137/S0040585X97982840. | MR | Zbl
and .[5] Sharp optimality in density deconvolution with dominating bias. II. Theory Probab. Appl. 52(2) (2008) 237-249. | MR | Zbl
and .[6] Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(4) (2011) 601-627. DOI:10.1111/j.1467-9868.2011.00775.x. Available at http://dx.doi.org/10.1111/j.1467-9868.2011.00775.x. | MR | Zbl
and .[7] Adaptive density estimation in the pile-up model involving measurement errors. Preprint MAP5 2010-32, 2010. | MR
and .[8] Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34(3) (2006) 431-452. | MR | Zbl
, and .[9] Bootstrap bandwidth selection in kernel density estimation from a contaminated sample. Ann. Inst. Statist. Math. 56(1) (2004) 19-47. | MR | Zbl
and .[10] On deconvolution with repeated measurements. Ann. Statist. 36(2) (2008) 665-685. DOI:10.1214/009053607000000884. Available at http://dx.doi.org/10.1214/009053607000000884. | MR | Zbl
, and .[11] Nonuniform Random Variate Generation. Springer, New York, 1986. | MR | Zbl
.[12] The double kernel method in density estimation. Ann. Inst. H. Poincaré Probab. Stat. 25(4) (1989) 533-580. | Numdam | MR | Zbl
.[13] Nonparametric estimation of the division rate of a size-structured population. Working paper, 2011. Available at http://hal.archives-ouvertes.fr/hal-00578694/fr/. | MR
, , and .[14] On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19(3) (1991) 1257-1272. | MR | Zbl
.[15] Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Statist. 21(2) (1993) 600-610. DOI:10.1214/aos/1176349139. Available at http://dx.doi.org/10.1214/aos/1176349139. | MR | Zbl
.[16] Uniform bounds for norms of sums of independent random functions. Ann. Probab. 39(6) (2011) 2318-2384. DOI:10.1214/10-AOP595. Available at http://dx.doi.org/10.1214/10-AOP595. | MR | Zbl
and .[17] Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Statist. 39(3) (2011) 1608-1632. | MR | Zbl
and .[18] A ridge-parameter approach to deconvolution. Ann. Statist. 35(4) (2007) 1535-1558. DOI:10.1214/009053607000000028. Available at http://dx.doi.org/10.1214/009053607000000028. | MR | Zbl
and .[19] Deconvolution with unknown error distribution. Ann. Statist. 37(5A) (2009) 2301-2323. DOI:10.1214/08-AOS652. Available at http://dx.doi.org/10.1214/08-AOS652. | MR | Zbl
.[20] Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields 121 (2001) 137-170. | MR | Zbl
, and .[21] Concentration around the mean for maxima of empirical processes. Ann. Probab. 33(3) (2005) 1060-1077. DOI:10.1214/009117905000000044. Available at http://dx.doi.org/10.1214/009117905000000044. | MR | Zbl
and .[22] Rates of convergence for nonparametric deconvolution. C. R. Math. Acad. Sci. Paris 342(11) (2006) 877-882. DOI:10.1016/j.crma.2006.04.006. Available at http://dx.doi.org/10.1016/j.crma.2006.04.006. | MR | Zbl
.[23] Multivariate probability density deconvolution for stationary random processes. IEEE Trans. Inform. Theory 37(4) (1991) 1105-1115. DOI:10.1109/18.87002. Available at http://dx.doi.org/10.1109/18.87002. | MR | Zbl
.[24] Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions. Inverse Problems 24(1) (2008) 015003. DOI:10.1088/0266-5611/24/1/015003. | MR | Zbl
.[25] Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics 193. Springer, Berlin, 2009. | MR | Zbl
.[26] On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7(4) (1997) 307-330. DOI:10.1080/10485259708832708. Available at http://dx.doi.org/10.1080/10485259708832708. | MR | Zbl
.[27] Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York, 1975. Translated from the Russian by John M. Danskin, Jr., Die Grundlehren der Mathematischen Wissenschaften, Band 205. | MR | Zbl
.[28] Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27(6) (1999) 2033-2053. | MR | Zbl
and .[29] Theory of Function Spaces. III. Monographs in Mathematics 100. Birkhäuser, Basel, 2006. | MR | Zbl
.[30] Introduction to Nonparametric Estimation. Springer, New York, 2009. | MR | Zbl
.[31] Optimal bandwidth selection for multivariate kernel deconvolution density estimation. TEST 17(1) (2008) 138-162. DOI:10.1007/s11749-006-0027-5. Available at http://dx.doi.org/10.1007/s11749-006-0027-5. | MR | Zbl
and .Cité par Sources :