Le cactus d’un graphe pointé est un certain arbre discret associé à ce graphe. De façon similaire, à tout espace métrique géodésique pointé , on peut associer un -arbre appelé cactus continu de . Sous des hypothèses générales, nous montrons que le cactus de cartes planaires aléatoires - dont la loi est déterminée par des poids de Boltzmann, et qui sont conditionnées à avoir un grand nombre fixé de sommets - converge en loi vers un espace limite appelé cactus brownien, au sens de la topologie de Gromov-Hausdorff. De plus, le cactus brownien peut être interprété comme le cactus continu de la carte brownienne.
The cactus of a pointed graph is a discrete tree associated with this graph. Similarly, with every pointed geodesic metric space , one can associate an -tree called the continuous cactus of . We prove under general assumptions that the cactus of random planar maps distributed according to Boltzmann weights and conditioned to have a fixed large number of vertices converges in distribution to a limiting space called the Brownian cactus, in the Gromov-Hausdorff sense. Moreover, the Brownian cactus can be interpreted as the continuous cactus of the so-called Brownian map.
Mots-clés : random planar maps, scaling limit, brownian map, brownian cactus, Hausdorff dimension
@article{AIHPB_2013__49_2_340_0, author = {Curien, Nicolas and Le Gall, Jean-Fran\c{c}ois and Miermont, Gr\'egory}, title = {The brownian cactus {I.} {Scaling} limits of discrete cactuses}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {340--373}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP460}, mrnumber = {3088373}, zbl = {1275.60035}, language = {en}, url = {http://www.numdam.org/articles/10.1214/11-AIHP460/} }
TY - JOUR AU - Curien, Nicolas AU - Le Gall, Jean-François AU - Miermont, Grégory TI - The brownian cactus I. Scaling limits of discrete cactuses JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 340 EP - 373 VL - 49 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/11-AIHP460/ DO - 10.1214/11-AIHP460 LA - en ID - AIHPB_2013__49_2_340_0 ER -
%0 Journal Article %A Curien, Nicolas %A Le Gall, Jean-François %A Miermont, Grégory %T The brownian cactus I. Scaling limits of discrete cactuses %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 340-373 %V 49 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/11-AIHP460/ %R 10.1214/11-AIHP460 %G en %F AIHPB_2013__49_2_340_0
Curien, Nicolas; Le Gall, Jean-François; Miermont, Grégory. The brownian cactus I. Scaling limits of discrete cactuses. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 340-373. doi : 10.1214/11-AIHP460. http://www.numdam.org/articles/10.1214/11-AIHP460/
[1] The continuum random tree I. Ann. Probab. 19 (1991) 1-28. | MR | Zbl
.[2] Quantum Geometry. A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
, and .[3] Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004) R69. | MR | Zbl
, and .[4] Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech. Theory Exp. (2009) P03001. | MR
and .[5] A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Boston, 2001. | MR | Zbl
, and .[6] Probability and Real Trees. Lecture Notes in Math. 1920. Springer, Berlin, 2008. | MR | Zbl
.[7] Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 (2006) 81-126. | MR | Zbl
, and .[8] The Valuative Tree. Lecture Notes in Math. 1853. Springer, Berlin, 2004. | MR | Zbl
and .[9] Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston, 2001. | MR | Zbl
.[10] Local asymptotic laws for Brownian motion. Ann. Probab. 1 (1973) 527-549. | MR | Zbl
and .[11] Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141. Springer, Berlin, 2004. | MR | Zbl
and .[12] Random trees and applications. Probab. Sur. 2 (2005) 245-311. | EuDML | MR | Zbl
.[13] The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007) 621-670. | MR | Zbl
.[14] Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2010) 287-360. | MR | Zbl
.[15] Uniqueness and universality of the Brownian map. Preprint. Available at arXiv:1105.4842. | MR | Zbl
.[16] Scaling limits of bipartite planar maps are homeomorphic to the -sphere. Geomet. Funct. Anal. 18 (2008) 893-918. | MR | Zbl
and .[17] Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007) 1642-1705. | MR | Zbl
and .[18] Limit of normalized quadrangulations. The Brownian map. Ann. Probab. 34 (2006) 2144-2202. | MR | Zbl
and .[19] An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities 39-57 (electronic). Discrete Math. Theor. Comput. Sci. Proc., AG. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006. | MR | Zbl
.[20] Invariance principles for spatial multitype Galton-Watson trees. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 1128-1161. | EuDML | Numdam | MR | Zbl
.[21] The Brownian map is the scaling limit of uniform random plane quadrangulations. Preprint. Available at arXiv:1104.1606. | MR | Zbl
.[22] Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab. 13 (2008) 79-106. | EuDML | MR | Zbl
and .[23] Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. | MR | Zbl
and .[24] Conformally invariant scaling limits: An overview and a collection of problems. In Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I 513-543. European Math. Soc., Zürich, 2007. | MR | Zbl
.[25] A census of planar maps. Canad. J. Math. 15 (1963) 249-271. | MR | Zbl
.Cité par Sources :