Nous étudions une marche aléatoire branchante sur
We study a branching random walk on
Mots-clés : branching random walk, survival probability
@article{AIHPB_2012__48_4_989_0, author = {Jaffuel, Bruno}, title = {The critical barrier for the survival of branching random walk with absorption}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {989--1009}, publisher = {Gauthier-Villars}, volume = {48}, number = {4}, year = {2012}, doi = {10.1214/11-AIHP453}, mrnumber = {3052402}, zbl = {1263.60076}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP453/} }
TY - JOUR AU - Jaffuel, Bruno TI - The critical barrier for the survival of branching random walk with absorption JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 989 EP - 1009 VL - 48 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP453/ DO - 10.1214/11-AIHP453 LA - en ID - AIHPB_2012__48_4_989_0 ER -
%0 Journal Article %A Jaffuel, Bruno %T The critical barrier for the survival of branching random walk with absorption %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 989-1009 %V 48 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP453/ %R 10.1214/11-AIHP453 %G en %F AIHPB_2012__48_4_989_0
Jaffuel, Bruno. The critical barrier for the survival of branching random walk with absorption. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 4, pp. 989-1009. doi : 10.1214/11-AIHP453. https://www.numdam.org/articles/10.1214/11-AIHP453/
[1] Total progeny in killed branching random walk. Probab. Theory Related Fields 151 (2011) 265-295. | Zbl
and .[2] Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab. 15 (2010) 522-533. | Zbl
.[3] The precise tail behavior of the total progeny of a killed branching random walk. Preprint, 2011. Available at arXiv:1102.5536 [math.PR].
, and .[4] Survival of branching random walks with absorption. Stochastic Process. Appl. 121 (2011) 1901-1937. | Zbl
and .[5] Ordinary Differential Equations. MIT Press, Cambridge, MA, 1973. Translated and edited by R. A. Silverman. | Zbl
.[6] Seneta-Heyde norming in the branching random walk. Ann. Probab. 25 (1997) 337-360. | Zbl
and .[7] A branching random walk with barrier. Ann. Appl. Probab. 1 (1991) 573-581. | MR | Zbl
, , and .[8] The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007). Art. 60006, 6. | MR | Zbl
and .[9] Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008) 203-233. | MR | Zbl
and .[10] Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. H. Poincaré Probab. Stat. 47 (2011) 111-129. | Numdam | MR | Zbl
, and .[11] Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81-92. | MR | Zbl
and .[12] Branching Brownian motion with absorption. Stochastic Processes Appl. 7 (1978) 9-47. | MR | Zbl
.[13] Small deviations in the space of trajectories. Theory Probab. Appl. 19 (1975) 726-736. | Zbl
.[14] Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab. 19 (2009) 1273-1291. | MR | Zbl
.Cité par Sources :