Dans beaucoup d'applications, on cherche à effectuer une inférence statistique sur des paramètres définis à partir de la mesure spectrale d'une F-matrice, matrice obtenue comme le produit d'une matrice de covariance du tableau de variables indépendantes (Xjk)p×n1 et de l'inverse d'une autre matrice de covariance (Yjk)p×n2. Les variables sont soient toutes réelles soient complexes. Il est donc utile d'étudier les distributions asymptotiques des estimateurs de ces paramètres associés à la F-matrice. Dans cet article, nous établissons des théorèmes centraux limites pour les statistiques linéaires du spectre de la F-matrice dans la limite où p, n1, n2 tendent vers l'infini en restant de même ordre, et donnons des formules exactes pour leurs moyennes et covariances. De plus, l'hypothèse que les variables (Xjk)p×n1 et (Yjk)p×n2 sont i.i.d. et la restriction que le quatrième moment est égal à 2 ou 3 comme dans Bai et Silverstein (Ann. Probab. 32 (2004) 553-605) sont affaiblies de la manière suivante; les coefficients (Xjk)p×n1 et (Yjk)p×n2 sont indépendants mais non nécessairement équidistribués, pourvu qu'ils aient le même quatrième moment dans chaque tableau. Par conséquent, nous obtenons le théorème de la limite centrale pour les statistiques linéaires de la matrice beta qui est de la forme (I + d ⋅ F matrix)-1, où d est une constante et I la matrice identité.
In many applications, one needs to make statistical inference on the parameters defined by the limiting spectral distribution of an F matrix, the product of a sample covariance matrix from the independent variable array (Xjk)p×n1 and the inverse of another covariance matrix from the independent variable array (Yjk)p×n2. Here, the two variable arrays are assumed to either both real or both complex. It helps to find the asymptotic distribution of the relevant parameter estimators associated with the F matrix. In this paper, we establish the central limit theorems with explicit expressions of means and covariance functions for the linear spectral statistics of the large dimensional F matrix, where the dimension p of the two samples tends to infinity proportionally to the sample sizes (n1, n2). Moreover, the assumptions of the i.i.d. structures of arrays (Xjk)p×n1, (Yjk)p×n2 and the restriction of the fourth moments equaling 2 or 3 made in Bai and Silverstein (Ann. Probab. 32 (2004) 553-605) are relaxed to that arrays (Xjk)p×n1 and (Yjk)p×n2 are independent respectively but not necessarily identically distributed except for a common fourth moment for each array. As a consequence, we obtain the central limit theorems for the linear spectral statistics of the beta matrix that is of the form (I + d ⋅ F matrix)-1, where d is a constant and I is an identity matrix.
Mots-clés : linear spectral statistics, central limit theorem, F-matrix, beta matrix
@article{AIHPB_2012__48_2_444_0, author = {Zheng, Shurong}, title = {Central limit theorems for linear spectral statistics of large dimensional $F$-matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {444--476}, publisher = {Gauthier-Villars}, volume = {48}, number = {2}, year = {2012}, doi = {10.1214/11-AIHP414}, zbl = {1251.15039}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP414/} }
TY - JOUR AU - Zheng, Shurong TI - Central limit theorems for linear spectral statistics of large dimensional $F$-matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 444 EP - 476 VL - 48 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP414/ DO - 10.1214/11-AIHP414 LA - en ID - AIHPB_2012__48_2_444_0 ER -
%0 Journal Article %A Zheng, Shurong %T Central limit theorems for linear spectral statistics of large dimensional $F$-matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 444-476 %V 48 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP414/ %R 10.1214/11-AIHP414 %G en %F AIHPB_2012__48_2_444_0
Zheng, Shurong. Central limit theorems for linear spectral statistics of large dimensional $F$-matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 444-476. doi : 10.1214/11-AIHP414. https://www.numdam.org/articles/10.1214/11-AIHP414/
[1] A CLT for a band matrix model. Probab. Theory Related Fields 134 (2006) 283-338. | MR | Zbl
and .[2] A note on asymptotic joint distribution of the eigenvalues of a noncentral multivariate F-matrix. Technical report, Central for Multivariate Analysis, Univ. Pittsburgh, 1984. | Zbl
.[3] No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab. 26 (1998) 316-345. | MR | Zbl
and .[4] Exact separation of eigenvalues of large dimensional sample covariance matrices. Ann. Probab. 27 (1999) 1536-1555. | MR | Zbl
and .[5] CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 (2004) 553-605. | MR | Zbl
and .[6] Spectral Analysis of Large-Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. | MR
and .[7] On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11 (2005) 1059-1092. | MR | Zbl
and .[8] On LSD of product of two random matrices when the underlying distribution is isotropic. J. Multivariate Anal. 19 (1986) 189-200. | MR | Zbl
, and .[9] On the statistical mechanics approach in the random matrix theory, integrated density of states. J. Stat. Phys. 79 (1995) 585-611. | MR | Zbl
, and .[10] Fluctuations de la loi empirique de grande matrices aléatoires. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 373-402. | Numdam | MR | Zbl
.[11] Fluctuations of eigenvalues and second order poincaré inequalities. Probab. Theory Related Fields 143 (2009) 1-40. | MR | Zbl
.[12] Gaussian fluctuation in random matrices. Phys. Rev. Lett. 75 (1995) 69-72.
and .[13] Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 (2001) 2615-2633. | MR | Zbl
and .[14] Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J. Math. Phys. 47 (2006) 063302. | MR | Zbl
and .[15] Theory of Random Determinants. Kluwer Academic Publishers, London, 1990. | MR | Zbl
.[16] Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 341-384. | Numdam | MR | Zbl
.[17] A new approach for capacity analysis of large dimensional multi-antenna channels. IEEE Trans. Inform. Theory 54 (2008) 3987-4004. | MR
, , , and .[18] A CLT for information-theoretical statistics of Gram random matrices with a given variance profile. Ann. Appl. Probab. 18 (2008) 2071-2130. | MR | Zbl
, and .[19] Martingale Limit Theory and Its Application. Academic Press, New York, 1980. | MR | Zbl
and .[20] On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys. 220 (2001) 429-451. | MR | Zbl
, and .[21] Asymptotic fluctuations of a particle system with singular interaction. Stochastic Process. Appl. 93 (2001) 25-56. | MR | Zbl
.[22] Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Related Fields 144 (2009) 221-246. | MR | Zbl
.[23] On random matrices from the classical compact groups. Ann. Math. 145 (1997) 519-545. | MR | Zbl
.[24] On the fluctuation of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998) 151-204. | MR | Zbl
.[25] High dimensional statistical inference and random matrices. In International Congress of Mathematicians, Vol. I 307-333. Eur. Math. Soc. Zürich, Switzerland, 2007. | MR | Zbl
.[26] Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 (1982) 1-38. | MR | Zbl
.[27] Random matrix theory and ζ(1/2 + it). Comm. Math. Phys. 214 (2000) 57-89. | MR | Zbl
and .[28] Asymptotic properties of large random matrices with independent entrices. J. Math. Phys. 37 (1996) 5033-5060. | MR | Zbl
, and .[29] Second order freeness and fluctuations of random matrices I, Gaussian and Wishart matrices and cyclic Fock spaces. J. Funct. Anal. 235 (2006) 226-270. | MR | Zbl
and .[30] Percentage points of the largest root of the multivariate beta matrix. Biometrika 54 (1967) 189-194. | MR | Zbl
.[31] Percentage points of the largest characteristic root of the multivariate beta matrix. Comm. Statist. 13 (1984) 2199-2237. | MR | Zbl
and .[32] Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34 (2006) 2118-2143. | MR | Zbl
and .[33] The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2007 (2007) Article ID rnm006. | MR | Zbl
and .[34] The limiting eigenvalue distribution of a multivariate F-matrix. SIAM J. Math. Anal. 16 (1985) 641-646. | MR | Zbl
.[35] Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivariate Anal. 54 (1995) 295-309. | MR | Zbl
and .[36] Central limit theorems for traces of large random matrices with independent entries. Bol. Soc. Brasil. Mat. 29 (1998) 1-24. | MR | Zbl
and .[37] A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. Funct. Anal. Appl. 32 (1998) 114-131. | MR | Zbl
and .[38] Gaussian limits for determinantal random point fields. Ann. Probab. 28 (2002) 171-181. | MR | Zbl
.[39] Eigenvalue distributions of random unitary matrices. Probab. Theory Related Fields 123 (2002) 202-224. | MR | Zbl
.[40] Limiting behavior of the eigenvalues of a multivariate F-matrix. J. Multivariate Anal. 13 (1983) 508-516. | MR | Zbl
, and .- Linear spectral statistics of sequential sample covariance matrices, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 2, pp. 946-970 | DOI:10.1214/22-aihp1339 | Zbl:7904821
- Linear spectral statistics of eigenvectors of anisotropic sample covariance matrices, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 4, pp. 2767-2812 | DOI:10.1214/23-aihp1408 | Zbl:7967662
- A New Statistic for Testing Covariance Equality in High-Dimensional Gaussian Low-Rank Models, IEEE Transactions on Signal Processing, Volume 72 (2024), p. 1797 | DOI:10.1109/tsp.2024.3382476
- Tests for Large-Dimensional Shape Matrices via Tyler’s M Estimators, Journal of the American Statistical Association (2024), p. 1 | DOI:10.1080/01621459.2024.2350573
- Two Sample Test for Covariance Matrices in Ultra-High Dimension, Journal of the American Statistical Association (2024), p. 1 | DOI:10.1080/01621459.2024.2423971
- Random matrix theory and high-dimensional statistics, Probability Models, Volume 51 (2024), p. 119 | DOI:10.1016/bs.host.2024.07.008
- Statistical inference on kurtosis of independent component model, Random Matrices: Theory and Applications, Volume 13 (2024) no. 4, p. 22 (Id/No 2450018) | DOI:10.1142/s2010326324500187 | Zbl:1551.62031
- Spiked eigenvalues of noncentral Fisher matrix with applications, Bernoulli, Volume 29 (2023) no. 4, pp. 3171-3197 | DOI:10.3150/22-bej1579 | Zbl:7941471
- Exact test theory in Gaussian graphical models, Journal of Multivariate Analysis, Volume 196 (2023), p. 21 (Id/No 105185) | DOI:10.1016/j.jmva.2023.105185 | Zbl:1520.62073
- Limiting spectral distribution of high-dimensional noncentral Fisher matrices and its analysis, Science China. Mathematics, Volume 66 (2023) no. 2, pp. 393-408 | DOI:10.1007/s11425-020-1958-1 | Zbl:7649254
- Detecting changes in covariance via random matrix theory, Technometrics, Volume 65 (2023) no. 4, pp. 480-491 | DOI:10.1080/00401706.2023.2183261 | Zbl:7937290
- A CLT for the LSS of large-dimensional sample covariance matrices with diverging spikes, The Annals of Statistics, Volume 51 (2023) no. 5, pp. 2246-2271 | DOI:10.1214/23-aos2333 | Zbl:1529.60029
- Outage Probability and Finite-SNR DMT Analysis for IRS-Aided MIMO Systems: How Large IRSs Need to be?, IEEE Journal of Selected Topics in Signal Processing, Volume 16 (2022) no. 5, p. 1070 | DOI:10.1109/jstsp.2022.3175620
- , 2021 IEEE Statistical Signal Processing Workshop (SSP) (2021), p. 421 | DOI:10.1109/ssp49050.2021.9513795
- Sphericity and identity test for high-dimensional covariance matrix using random matrix theory, Acta Mathematicae Applicatae Sinica. English Series, Volume 37 (2021) no. 2, pp. 214-231 | DOI:10.1007/s10255-021-1004-1 | Zbl:1466.62260
- On the phase transition of Wilks’ phenomenon, Biometrika, Volume 108 (2021) no. 3, p. 741 | DOI:10.1093/biomet/asaa078
- High-dimensional linear models: a random matrix perspective, Sankhyā. Series A, Volume 83 (2021) no. 2, pp. 645-695 | DOI:10.1007/s13171-020-00219-y | Zbl:1472.62080
- Likelihood ratio test in multivariate linear regression: from low to high dimension, Statistica Sinica, Volume 31 (2021) no. 3, pp. 1215-1238 | DOI:10.5705/ss.202019.0056 | Zbl:1478.62194
- Central limit theorem for linear spectral statistics of large dimensional Kendall's rank correlation matrices and its applications, The Annals of Statistics, Volume 49 (2021) no. 3, pp. 1569-1593 | DOI:10.1214/20-aos2013 | Zbl:1475.62168
- High-dimensional general linear hypothesis tests via non-linear spectral shrinkage, Bernoulli, Volume 26 (2020) no. 4, pp. 2541-2571 | DOI:10.3150/19-bej1186 | Zbl:1461.62079
- Modified Pillai's trace statistics for two high-dimensional sample covariance matrices, Journal of Statistical Planning and Inference, Volume 207 (2020), pp. 255-275 | DOI:10.1016/j.jspi.2020.01.002 | Zbl:1437.62204
- Tests for high-dimensional covariance matrices, Random Matrices: Theory and Applications, Volume 9 (2020) no. 3, p. 25 (Id/No 2050009) | DOI:10.1142/s2010326320500094 | Zbl:1456.62098
- Testing in high-dimensional spiked models, The Annals of Statistics, Volume 48 (2020) no. 3 | DOI:10.1214/18-aos1697
- Asymptotic joint distribution of extreme eigenvalues and trace of large sample covariance matrix in a generalized spiked population model, The Annals of Statistics, Volume 48 (2020) no. 6, pp. 3138-3160 | DOI:10.1214/19-aos1882 | Zbl:1465.62045
- Bootstrapping spectral statistics in high dimensions, Biometrika, Volume 106 (2019) no. 4, p. 781 | DOI:10.1093/biomet/asz040
- High-dimensional testing for proportional covariance matrices, Journal of Multivariate Analysis, Volume 171 (2019), pp. 412-420 | DOI:10.1016/j.jmva.2019.01.011 | Zbl:1419.62145
- Random matrix-improved estimation of covariance matrix distances, Journal of Multivariate Analysis, Volume 174 (2019), p. 24 (Id/No 104531) | DOI:10.1016/j.jmva.2019.06.009 | Zbl:1428.62218
- Testing for independence of large dimensional vectors, The Annals of Statistics, Volume 47 (2019) no. 5, pp. 2977-3008 | DOI:10.1214/18-aos1771 | Zbl:1436.60018
- On testing for high-dimensional white noise, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3382-3412 | DOI:10.1214/18-aos1782 | Zbl:1512.62079
- Hypothesis testing on linear structures of high-dimensional covariance matrix, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3300-3334 | DOI:10.1214/18-aos1779 | Zbl:1435.62202
- Joint convergence of sample autocovariance matrices when
with application, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3470-3503 | DOI:10.1214/18-aos1785 | Zbl:1435.62316 - A supplement on CLT for LSS under a large dimensional generalized spiked covariance model, Statistics Probability Letters, Volume 138 (2018), pp. 57-65 | DOI:10.1016/j.spl.2018.02.061 | Zbl:1463.62213
- Limiting behavior of eigenvalues in high-dimensional MANOVA via RMT, The Annals of Statistics, Volume 46 (2018) no. 6A, pp. 2985-3013 | DOI:10.1214/17-aos1646 | Zbl:1411.62130
- , 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017), p. 4506 | DOI:10.1109/icassp.2017.7953009
- CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications, Bernoulli, Volume 23 (2017) no. 2 | DOI:10.3150/15-bej772
- Distribution of linear statistics of singular values of the product of random matrices, Bernoulli, Volume 23 (2017) no. 4B | DOI:10.3150/16-bej837
- Likelihood-based tests on moderate-high-dimensional mean vectors with unequal covariance matrices, Journal of the Korean Statistical Society, Volume 46 (2017) no. 3, pp. 451-461 | DOI:10.1016/j.jkss.2017.01.005 | Zbl:1368.62151
- On Estimation of the Noise Variance in High Dimensional Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 79 (2017) no. 1, p. 51 | DOI:10.1111/rssb.12153
- Tests for large-dimensional covariance structure based on Rao's score test, Journal of Multivariate Analysis, Volume 152 (2016), pp. 28-39 | DOI:10.1016/j.jmva.2016.07.010 | Zbl:1349.62222
- Beyond universality in random matrix theory, The Annals of Applied Probability, Volume 26 (2016) no. 3, pp. 1659-1697 | DOI:10.1214/15-aap1129 | Zbl:1408.60007
- The Tracy-Widom law for the largest eigenvalue of F type matrices, The Annals of Statistics, Volume 44 (2016) no. 4, pp. 1564-1592 | DOI:10.1214/15-aos1427 | Zbl:1378.60023
- Convergence of the empirical spectral distribution function of beta matrices, Bernoulli, Volume 21 (2015) no. 3, pp. 1538-1574 | DOI:10.3150/14-bej613 | Zbl:1319.60006
- Large System Analysis of a GLRT for Detection With Large Sensor Arrays in Temporally White Noise, IEEE Transactions on Signal Processing, Volume 63 (2015) no. 20, p. 5409 | DOI:10.1109/tsp.2015.2452220
- Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models, Journal of Multivariate Analysis, Volume 139 (2015), pp. 124-146 | DOI:10.1016/j.jmva.2015.03.001 | Zbl:1317.33003
- A robust test for sphericity of high-dimensional covariance matrices, Journal of Multivariate Analysis, Volume 141 (2015), p. 217 | DOI:10.1016/j.jmva.2015.07.010
- Asymptotic linear spectral statistics for spiked Hermitian random matrices, Journal of Statistical Physics, Volume 160 (2015) no. 1, pp. 120-150 | DOI:10.1007/s10955-015-1233-x | Zbl:1362.60004
- CLT for linear spectral statistics of a rescaled sample precision matrix, Random Matrices: Theory and Applications, Volume 04 (2015) no. 04, p. 1550014 | DOI:10.1142/s2010326315500148
- Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing, The Annals of Statistics, Volume 43 (2015) no. 2, pp. 546-591 | DOI:10.1214/14-aos1292 | Zbl:1312.62074
- Independence test for high dimensional data based on regularized canonical correlation coefficients, The Annals of Statistics, Volume 43 (2015) no. 2, pp. 467-500 | DOI:10.1214/14-aos1284 | Zbl:1344.60027
- Testing proportionality of two large-dimensional covariance matrices, Computational Statistics and Data Analysis, Volume 78 (2014), pp. 43-55 | DOI:10.1016/j.csda.2014.03.014 | Zbl:1506.62197
- A new test for the proportionality of two large-dimensional covariance matrices, Journal of Multivariate Analysis, Volume 131 (2014), pp. 293-308 | DOI:10.1016/j.jmva.2014.06.008 | Zbl:1299.62043
- Random matrix theory in statistics: a review, Journal of Statistical Planning and Inference, Volume 150 (2014), pp. 1-29 | DOI:10.1016/j.jspi.2013.09.005 | Zbl:1287.62011
- Testing independence among a large number of high-dimensional random vectors, Journal of the American Statistical Association, Volume 109 (2014) no. 506, pp. 600-612 | DOI:10.1080/01621459.2013.872037 | Zbl:1367.62261
- Limiting spectral distribution of a symmetrized auto-cross covariance matrix, The Annals of Applied Probability, Volume 24 (2014) no. 3, pp. 1199-1225 | DOI:10.1214/13-aap945 | Zbl:1296.60006
- On the sphericity test with large-dimensional observations, Electronic Journal of Statistics, Volume 7 (2013), pp. 2164-2192 | DOI:10.1214/13-ejs842 | Zbl:1293.62127
- Testing Independence for a Large Number of High-Dimensional Random Vectors, SSRN Electronic Journal (2013) | DOI:10.2139/ssrn.2233661
- Testing the independence of sets of large-dimensional variables, Science China. Mathematics, Volume 56 (2013) no. 1, pp. 135-147 | DOI:10.1007/s11425-012-4501-0 | Zbl:1256.62033
- Testing linear hypotheses in high-dimensional regressions, Statistics, Volume 47 (2013) no. 6, pp. 1207-1223 | DOI:10.1080/02331888.2012.708031 | Zbl:1440.62215
Cité par 58 documents. Sources : Crossref, zbMATH