Central limit theorems for linear spectral statistics of large dimensional F-matrices
Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 444-476.

Dans beaucoup d'applications, on cherche à effectuer une inférence statistique sur des paramètres définis à partir de la mesure spectrale d'une F-matrice, matrice obtenue comme le produit d'une matrice de covariance du tableau de variables indépendantes (Xjk)p×n1 et de l'inverse d'une autre matrice de covariance (Yjk)p×n2. Les variables sont soient toutes réelles soient complexes. Il est donc utile d'étudier les distributions asymptotiques des estimateurs de ces paramètres associés à la F-matrice. Dans cet article, nous établissons des théorèmes centraux limites pour les statistiques linéaires du spectre de la F-matrice dans la limite où p, n1, n2 tendent vers l'infini en restant de même ordre, et donnons des formules exactes pour leurs moyennes et covariances. De plus, l'hypothèse que les variables (Xjk)p×n1 et (Yjk)p×n2 sont i.i.d. et la restriction que le quatrième moment est égal à 2 ou 3 comme dans Bai et Silverstein (Ann. Probab. 32 (2004) 553-605) sont affaiblies de la manière suivante; les coefficients (Xjk)p×n1 et (Yjk)p×n2 sont indépendants mais non nécessairement équidistribués, pourvu qu'ils aient le même quatrième moment dans chaque tableau. Par conséquent, nous obtenons le théorème de la limite centrale pour les statistiques linéaires de la matrice beta qui est de la forme (I + dF matrix)-1, où d est une constante et I la matrice identité.

In many applications, one needs to make statistical inference on the parameters defined by the limiting spectral distribution of an F matrix, the product of a sample covariance matrix from the independent variable array (Xjk)p×n1 and the inverse of another covariance matrix from the independent variable array (Yjk)p×n2. Here, the two variable arrays are assumed to either both real or both complex. It helps to find the asymptotic distribution of the relevant parameter estimators associated with the F matrix. In this paper, we establish the central limit theorems with explicit expressions of means and covariance functions for the linear spectral statistics of the large dimensional F matrix, where the dimension p of the two samples tends to infinity proportionally to the sample sizes (n1, n2). Moreover, the assumptions of the i.i.d. structures of arrays (Xjk)p×n1, (Yjk)p×n2 and the restriction of the fourth moments equaling 2 or 3 made in Bai and Silverstein (Ann. Probab. 32 (2004) 553-605) are relaxed to that arrays (Xjk)p×n1 and (Yjk)p×n2 are independent respectively but not necessarily identically distributed except for a common fourth moment for each array. As a consequence, we obtain the central limit theorems for the linear spectral statistics of the beta matrix that is of the form (I + dF matrix)-1, where d is a constant and I is an identity matrix.

DOI : 10.1214/11-AIHP414
Classification : Primary 15A52, 60F05, secondary, 62H10
Mots-clés : linear spectral statistics, central limit theorem, F-matrix, beta matrix
@article{AIHPB_2012__48_2_444_0,
     author = {Zheng, Shurong},
     title = {Central limit theorems for linear spectral statistics of large dimensional $F$-matrices},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {444--476},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {2},
     year = {2012},
     doi = {10.1214/11-AIHP414},
     zbl = {1251.15039},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/11-AIHP414/}
}
TY  - JOUR
AU  - Zheng, Shurong
TI  - Central limit theorems for linear spectral statistics of large dimensional $F$-matrices
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2012
SP  - 444
EP  - 476
VL  - 48
IS  - 2
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/11-AIHP414/
DO  - 10.1214/11-AIHP414
LA  - en
ID  - AIHPB_2012__48_2_444_0
ER  - 
%0 Journal Article
%A Zheng, Shurong
%T Central limit theorems for linear spectral statistics of large dimensional $F$-matrices
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2012
%P 444-476
%V 48
%N 2
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/11-AIHP414/
%R 10.1214/11-AIHP414
%G en
%F AIHPB_2012__48_2_444_0
Zheng, Shurong. Central limit theorems for linear spectral statistics of large dimensional $F$-matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 444-476. doi : 10.1214/11-AIHP414. https://www.numdam.org/articles/10.1214/11-AIHP414/

[1] G. W. Anderson and O. Zeitouni. A CLT for a band matrix model. Probab. Theory Related Fields 134 (2006) 283-338. | MR | Zbl

[2] Z. D. Bai. A note on asymptotic joint distribution of the eigenvalues of a noncentral multivariate F-matrix. Technical report, Central for Multivariate Analysis, Univ. Pittsburgh, 1984. | Zbl

[3] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large dimensional random matrices. Ann. Probab. 26 (1998) 316-345. | MR | Zbl

[4] Z. D. Bai and J. W. Silverstein. Exact separation of eigenvalues of large dimensional sample covariance matrices. Ann. Probab. 27 (1999) 1536-1555. | MR | Zbl

[5] Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 (2004) 553-605. | MR | Zbl

[6] Z. D. Bai and J. W. Silverstein. Spectral Analysis of Large-Dimensional Random Matrices, 2nd edition. Springer, New York, 2010. | MR

[7] Z. D. Bai and J. F. Yao. On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11 (2005) 1059-1092. | MR | Zbl

[8] Z. D. Bai, Y. Q. Yin and P. R. Krishnaiah. On LSD of product of two random matrices when the underlying distribution is isotropic. J. Multivariate Anal. 19 (1986) 189-200. | MR | Zbl

[9] A. Boutet De Monvel, L. Pastur and M. Shcherbina. On the statistical mechanics approach in the random matrix theory, integrated density of states. J. Stat. Phys. 79 (1995) 585-611. | MR | Zbl

[10] T. Cabanal-Duvillard. Fluctuations de la loi empirique de grande matrices aléatoires. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 373-402. | Numdam | MR | Zbl

[11] S. Chatterjee. Fluctuations of eigenvalues and second order poincaré inequalities. Probab. Theory Related Fields 143 (2009) 1-40. | MR | Zbl

[12] O. Costin and J. L. Lebowitz. Gaussian fluctuation in random matrices. Phys. Rev. Lett. 75 (1995) 69-72.

[13] P. Diaconis and S. N. Evans. Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 (2001) 2615-2633. | MR | Zbl

[14] I. Dumitriu and A. Edelman. Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J. Math. Phys. 47 (2006) 063302. | MR | Zbl

[15] V. L. Girko. Theory of Random Determinants. Kluwer Academic Publishers, London, 1990. | MR | Zbl

[16] A. Guionnet. Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 341-384. | Numdam | MR | Zbl

[17] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim and L. Pastur. A new approach for capacity analysis of large dimensional multi-antenna channels. IEEE Trans. Inform. Theory 54 (2008) 3987-4004. | MR

[18] W. Hachem, P. Loubaton and J. Najim. A CLT for information-theoretical statistics of Gram random matrices with a given variance profile. Ann. Appl. Probab. 18 (2008) 2071-2130. | MR | Zbl

[19] P. Hall and C. C. Heyde. Martingale Limit Theory and Its Application. Academic Press, New York, 1980. | MR | Zbl

[20] C. P. Hughes, J. P. Keating and N. O'Connell. On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys. 220 (2001) 429-451. | MR | Zbl

[21] S. Israelson. Asymptotic fluctuations of a particle system with singular interaction. Stochastic Process. Appl. 93 (2001) 25-56. | MR | Zbl

[22] T. Jiang. Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Related Fields 144 (2009) 221-246. | MR | Zbl

[23] K. Johansson. On random matrices from the classical compact groups. Ann. Math. 145 (1997) 519-545. | MR | Zbl

[24] K. Johansson. On the fluctuation of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998) 151-204. | MR | Zbl

[25] I. M. Johnstone. High dimensional statistical inference and random matrices. In International Congress of Mathematicians, Vol. I 307-333. Eur. Math. Soc. Zürich, Switzerland, 2007. | MR | Zbl

[26] D. Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 (1982) 1-38. | MR | Zbl

[27] J. P. Keating and N. C. Snaith. Random matrix theory and ζ(1/2 + it). Comm. Math. Phys. 214 (2000) 57-89. | MR | Zbl

[28] A. M. Khorunzhy, B. A. Knoruzhenko and L. A. Pastur. Asymptotic properties of large random matrices with independent entrices. J. Math. Phys. 37 (1996) 5033-5060. | MR | Zbl

[29] J. A. Mingo and R. Speicher. Second order freeness and fluctuations of random matrices I, Gaussian and Wishart matrices and cyclic Fock spaces. J. Funct. Anal. 235 (2006) 226-270. | MR | Zbl

[30] K. C. S. Pillai. Percentage points of the largest root of the multivariate beta matrix. Biometrika 54 (1967) 189-194. | MR | Zbl

[31] K. C. S. Pillai and B. N. Flury. Percentage points of the largest characteristic root of the multivariate beta matrix. Comm. Statist. 13 (1984) 2199-2237. | MR | Zbl

[32] B. Ridelury and J. W. Silverstein. Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34 (2006) 2118-2143. | MR | Zbl

[33] B. Rider and B. Virág. The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2007 (2007) Article ID rnm006. | MR | Zbl

[34] J. W. Silverstein. The limiting eigenvalue distribution of a multivariate F-matrix. SIAM J. Math. Anal. 16 (1985) 641-646. | MR | Zbl

[35] J. W. Silverstein and S. I. Choi. Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivariate Anal. 54 (1995) 295-309. | MR | Zbl

[36] Y. A. Sinaǐ and A. Soshnikov. Central limit theorems for traces of large random matrices with independent entries. Bol. Soc. Brasil. Mat. 29 (1998) 1-24. | MR | Zbl

[37] Y. A. Sinaǐ and A. Soshnikov. A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. Funct. Anal. Appl. 32 (1998) 114-131. | MR | Zbl

[38] A. Soshnikov. Gaussian limits for determinantal random point fields. Ann. Probab. 28 (2002) 171-181. | MR | Zbl

[39] K. Wieand. Eigenvalue distributions of random unitary matrices. Probab. Theory Related Fields 123 (2002) 202-224. | MR | Zbl

[40] Y. Q. Yin, Z. D. Bai and P. R. Krishnaiah. Limiting behavior of the eigenvalues of a multivariate F-matrix. J. Multivariate Anal. 13 (1983) 508-516. | MR | Zbl

  • Dörnemann, Nina; Dette, Holger Linear spectral statistics of sequential sample covariance matrices, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 2, pp. 946-970 | DOI:10.1214/22-aihp1339 | Zbl:7904821
  • Yang, Fan Linear spectral statistics of eigenvectors of anisotropic sample covariance matrices, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 60 (2024) no. 4, pp. 2767-2812 | DOI:10.1214/23-aihp1408 | Zbl:7967662
  • Beisson, Rémi; Vallet, Pascal; Giremus, Audrey; Ginolhac, Guillaume A New Statistic for Testing Covariance Equality in High-Dimensional Gaussian Low-Rank Models, IEEE Transactions on Signal Processing, Volume 72 (2024), p. 1797 | DOI:10.1109/tsp.2024.3382476
  • Li, Runze; Li, Weiming; Wang, Qinwen Tests for Large-Dimensional Shape Matrices via Tyler’s M Estimators, Journal of the American Statistical Association (2024), p. 1 | DOI:10.1080/01621459.2024.2350573
  • Ding, Xiucai; Hu, Yichen; Wang, Zhenggang Two Sample Test for Covariance Matrices in Ultra-High Dimension, Journal of the American Statistical Association (2024), p. 1 | DOI:10.1080/01621459.2024.2423971
  • Li, Weiming; Yao, Jianfeng; Zheng, Shurong Random matrix theory and high-dimensional statistics, Probability Models, Volume 51 (2024), p. 119 | DOI:10.1016/bs.host.2024.07.008
  • Zhou, Bowen; Chen, Hantao; Wang, Cheng Statistical inference on kurtosis of independent component model, Random Matrices: Theory and Applications, Volume 13 (2024) no. 4, p. 22 (Id/No 2450018) | DOI:10.1142/s2010326324500187 | Zbl:1551.62031
  • Hou, Zhiqiang; Zhang, Xiaozhuo; Bai, Zhidong; Hu, Jiang Spiked eigenvalues of noncentral Fisher matrix with applications, Bernoulli, Volume 29 (2023) no. 4, pp. 3171-3197 | DOI:10.3150/22-bej1579 | Zbl:7941471
  • Bodnar, Olha; Touli, Elena Farahbakhsh Exact test theory in Gaussian graphical models, Journal of Multivariate Analysis, Volume 196 (2023), p. 21 (Id/No 105185) | DOI:10.1016/j.jmva.2023.105185 | Zbl:1520.62073
  • Zhang, Xiaozhuo; Bai, Zhidong; Hu, Jiang Limiting spectral distribution of high-dimensional noncentral Fisher matrices and its analysis, Science China. Mathematics, Volume 66 (2023) no. 2, pp. 393-408 | DOI:10.1007/s11425-020-1958-1 | Zbl:7649254
  • Ryan, Sean; Killick, Rebecca Detecting changes in covariance via random matrix theory, Technometrics, Volume 65 (2023) no. 4, pp. 480-491 | DOI:10.1080/00401706.2023.2183261 | Zbl:7937290
  • Liu, Zhijun; Hu, Jiang; Bai, Zhidong; Song, Haiyan A CLT for the LSS of large-dimensional sample covariance matrices with diverging spikes, The Annals of Statistics, Volume 51 (2023) no. 5, pp. 2246-2271 | DOI:10.1214/23-aos2333 | Zbl:1529.60029
  • Zhang, Xin; Yu, Xianghao; Song, S.H. Outage Probability and Finite-SNR DMT Analysis for IRS-Aided MIMO Systems: How Large IRSs Need to be?, IEEE Journal of Selected Topics in Signal Processing, Volume 16 (2022) no. 5, p. 1070 | DOI:10.1109/jstsp.2022.3175620
  • Beisson, R.; Vallet, P.; Giremus, A.; Ginolhac, G., 2021 IEEE Statistical Signal Processing Workshop (SSP) (2021), p. 421 | DOI:10.1109/ssp49050.2021.9513795
  • Yuan, Shou-cheng; Zhou, Jie; Pan, Jian-xin; Shen, Jie-qiong Sphericity and identity test for high-dimensional covariance matrix using random matrix theory, Acta Mathematicae Applicatae Sinica. English Series, Volume 37 (2021) no. 2, pp. 214-231 | DOI:10.1007/s10255-021-1004-1 | Zbl:1466.62260
  • He, Yinqiu; Meng, Bo; Zeng, Zhenghao; Xu, Gongjun On the phase transition of Wilks’ phenomenon, Biometrika, Volume 108 (2021) no. 3, p. 741 | DOI:10.1093/biomet/asaa078
  • Namdari, Jamshid; Paul, Debashis; Wang, Lili High-dimensional linear models: a random matrix perspective, Sankhyā. Series A, Volume 83 (2021) no. 2, pp. 645-695 | DOI:10.1007/s13171-020-00219-y | Zbl:1472.62080
  • He, Yinqiu; Jiang, Tiefeng; Wen, Jiyang; Xu, Gongjun Likelihood ratio test in multivariate linear regression: from low to high dimension, Statistica Sinica, Volume 31 (2021) no. 3, pp. 1215-1238 | DOI:10.5705/ss.202019.0056 | Zbl:1478.62194
  • Li, Zeng; Wang, Qinwen; Li, Runze Central limit theorem for linear spectral statistics of large dimensional Kendall's rank correlation matrices and its applications, The Annals of Statistics, Volume 49 (2021) no. 3, pp. 1569-1593 | DOI:10.1214/20-aos2013 | Zbl:1475.62168
  • Li, Haoran; Aue, Alexander; Paul, Debashis High-dimensional general linear hypothesis tests via non-linear spectral shrinkage, Bernoulli, Volume 26 (2020) no. 4, pp. 2541-2571 | DOI:10.3150/19-bej1186 | Zbl:1461.62079
  • Zhang, Qiuyan; Hu, Jiang; Bai, Zhidong Modified Pillai's trace statistics for two high-dimensional sample covariance matrices, Journal of Statistical Planning and Inference, Volume 207 (2020), pp. 255-275 | DOI:10.1016/j.jspi.2020.01.002 | Zbl:1437.62204
  • Chen, Jing; Wang, Xiaoyi; Zheng, Shurong; Liu, Baisen; Shi, Ning-Zhong Tests for high-dimensional covariance matrices, Random Matrices: Theory and Applications, Volume 9 (2020) no. 3, p. 25 (Id/No 2050009) | DOI:10.1142/s2010326320500094 | Zbl:1456.62098
  • Johnstone, Iain M.; Onatski, Alexei Testing in high-dimensional spiked models, The Annals of Statistics, Volume 48 (2020) no. 3 | DOI:10.1214/18-aos1697
  • Li, Zeng; Han, Fang; Yao, Jianfeng Asymptotic joint distribution of extreme eigenvalues and trace of large sample covariance matrix in a generalized spiked population model, The Annals of Statistics, Volume 48 (2020) no. 6, pp. 3138-3160 | DOI:10.1214/19-aos1882 | Zbl:1465.62045
  • Lopes, Miles E; Blandino, Andrew; Aue, Alexander Bootstrapping spectral statistics in high dimensions, Biometrika, Volume 106 (2019) no. 4, p. 781 | DOI:10.1093/biomet/asz040
  • Tsukuda, Koji; Matsuura, Shun High-dimensional testing for proportional covariance matrices, Journal of Multivariate Analysis, Volume 171 (2019), pp. 412-420 | DOI:10.1016/j.jmva.2019.01.011 | Zbl:1419.62145
  • Couillet, Romain; Tiomoko, Malik; Zozor, Steeve; Moisan, Eric Random matrix-improved estimation of covariance matrix distances, Journal of Multivariate Analysis, Volume 174 (2019), p. 24 (Id/No 104531) | DOI:10.1016/j.jmva.2019.06.009 | Zbl:1428.62218
  • Bodnar, Taras; Dette, Holger; Parolya, Nestor Testing for independence of large dimensional vectors, The Annals of Statistics, Volume 47 (2019) no. 5, pp. 2977-3008 | DOI:10.1214/18-aos1771 | Zbl:1436.60018
  • Li, Zeng; Lam, Clifford; Yao, Jianfeng; Yao, Qiwei On testing for high-dimensional white noise, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3382-3412 | DOI:10.1214/18-aos1782 | Zbl:1512.62079
  • Zheng, Shurong; Chen, Zhao; Cui, Hengjian; Li, Runze Hypothesis testing on linear structures of high-dimensional covariance matrix, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3300-3334 | DOI:10.1214/18-aos1779 | Zbl:1435.62202
  • Bhattacharjee, Monika; Bose, Arup Joint convergence of sample autocovariance matrices when p/n0 with application, The Annals of Statistics, Volume 47 (2019) no. 6, pp. 3470-3503 | DOI:10.1214/18-aos1785 | Zbl:1435.62316
  • Chen, Jiaqi; Zhang, Yangchun; Li, Weiming; Tian, Boping A supplement on CLT for LSS under a large dimensional generalized spiked covariance model, Statistics Probability Letters, Volume 138 (2018), pp. 57-65 | DOI:10.1016/j.spl.2018.02.061 | Zbl:1463.62213
  • Bai, Zhidong; Choi, Kwok Pui; Fujikoshi, Yasunori Limiting behavior of eigenvalues in high-dimensional MANOVA via RMT, The Annals of Statistics, Volume 46 (2018) no. 6A, pp. 2985-3013 | DOI:10.1214/17-aos1646 | Zbl:1411.62130
  • Hiltunen, Sonja; Loubaton, Philippe, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017), p. 4506 | DOI:10.1109/icassp.2017.7953009
  • Zheng, Shurong; Bai, Zhidong; Yao, Jianfeng CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications, Bernoulli, Volume 23 (2017) no. 2 | DOI:10.3150/15-bej772
  • Götze, Friedrich; Naumov, Alexey; Tikhomirov, Alexander Distribution of linear statistics of singular values of the product of random matrices, Bernoulli, Volume 23 (2017) no. 4B | DOI:10.3150/16-bej837
  • Jiang, Dandan Likelihood-based tests on moderate-high-dimensional mean vectors with unequal covariance matrices, Journal of the Korean Statistical Society, Volume 46 (2017) no. 3, pp. 451-461 | DOI:10.1016/j.jkss.2017.01.005 | Zbl:1368.62151
  • Passemier, Damien; Li, Zhaoyuan; Yao, Jianfeng On Estimation of the Noise Variance in High Dimensional Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 79 (2017) no. 1, p. 51 | DOI:10.1111/rssb.12153
  • Jiang, Dandan Tests for large-dimensional covariance structure based on Rao's score test, Journal of Multivariate Analysis, Volume 152 (2016), pp. 28-39 | DOI:10.1016/j.jmva.2016.07.010 | Zbl:1349.62222
  • Edelman, Alan; Guionnet, A.; Péché, S. Beyond universality in random matrix theory, The Annals of Applied Probability, Volume 26 (2016) no. 3, pp. 1659-1697 | DOI:10.1214/15-aap1129 | Zbl:1408.60007
  • Han, Xiao; Pan, Guangming; Zhang, Bo The Tracy-Widom law for the largest eigenvalue of F type matrices, The Annals of Statistics, Volume 44 (2016) no. 4, pp. 1564-1592 | DOI:10.1214/15-aos1427 | Zbl:1378.60023
  • Bai, Zhidong; Hu, Jiang; Pan, Guangming; Zhou, Wang Convergence of the empirical spectral distribution function of beta matrices, Bernoulli, Volume 21 (2015) no. 3, pp. 1538-1574 | DOI:10.3150/14-bej613 | Zbl:1319.60006
  • Hiltunen, Sonja; Loubaton, Philippe; Chevalier, Pascal Large System Analysis of a GLRT for Detection With Large Sensor Arrays in Temporally White Noise, IEEE Transactions on Signal Processing, Volume 63 (2015) no. 20, p. 5409 | DOI:10.1109/tsp.2015.2452220
  • Passemier, Damien; McKay, Matthew R.; Chen, Yang Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models, Journal of Multivariate Analysis, Volume 139 (2015), pp. 124-146 | DOI:10.1016/j.jmva.2015.03.001 | Zbl:1317.33003
  • Tian, Xintao; Lu, Yuting; Li, Weiming A robust test for sphericity of high-dimensional covariance matrices, Journal of Multivariate Analysis, Volume 141 (2015), p. 217 | DOI:10.1016/j.jmva.2015.07.010
  • Passemier, Damien; McKay, Matthew R.; Chen, Yang Asymptotic linear spectral statistics for spiked Hermitian random matrices, Journal of Statistical Physics, Volume 160 (2015) no. 1, pp. 120-150 | DOI:10.1007/s10955-015-1233-x | Zbl:1362.60004
  • Zheng, Shurong; Bai, Zhidong; Yao, Jianfeng CLT for linear spectral statistics of a rescaled sample precision matrix, Random Matrices: Theory and Applications, Volume 04 (2015) no. 04, p. 1550014 | DOI:10.1142/s2010326315500148
  • Zheng, Shurong; Bai, Zhidong; Yao, Jianfeng Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing, The Annals of Statistics, Volume 43 (2015) no. 2, pp. 546-591 | DOI:10.1214/14-aos1292 | Zbl:1312.62074
  • Yang, Yanrong; Pan, Guangming Independence test for high dimensional data based on regularized canonical correlation coefficients, The Annals of Statistics, Volume 43 (2015) no. 2, pp. 467-500 | DOI:10.1214/14-aos1284 | Zbl:1344.60027
  • Xu, Lin; Liu, Baisen; Zheng, Shurong; Bao, Shaokun Testing proportionality of two large-dimensional covariance matrices, Computational Statistics and Data Analysis, Volume 78 (2014), pp. 43-55 | DOI:10.1016/j.csda.2014.03.014 | Zbl:1506.62197
  • Liu, Baisen; Xu, Lin; Zheng, Shurong; Tian, Guo-Liang A new test for the proportionality of two large-dimensional covariance matrices, Journal of Multivariate Analysis, Volume 131 (2014), pp. 293-308 | DOI:10.1016/j.jmva.2014.06.008 | Zbl:1299.62043
  • Paul, Debashis; Aue, Alexander Random matrix theory in statistics: a review, Journal of Statistical Planning and Inference, Volume 150 (2014), pp. 1-29 | DOI:10.1016/j.jspi.2013.09.005 | Zbl:1287.62011
  • Pan, Guangming; Gao, Jiti; Yang, Yanrong Testing independence among a large number of high-dimensional random vectors, Journal of the American Statistical Association, Volume 109 (2014) no. 506, pp. 600-612 | DOI:10.1080/01621459.2013.872037 | Zbl:1367.62261
  • Jin, Baisuo; Wang, Chen; Bai, Z. D.; Nair, K. Krishnan; Harding, Matthew Limiting spectral distribution of a symmetrized auto-cross covariance matrix, The Annals of Applied Probability, Volume 24 (2014) no. 3, pp. 1199-1225 | DOI:10.1214/13-aap945 | Zbl:1296.60006
  • Wang, Qinwen; Yao, Jianfeng On the sphericity test with large-dimensional observations, Electronic Journal of Statistics, Volume 7 (2013), pp. 2164-2192 | DOI:10.1214/13-ejs842 | Zbl:1293.62127
  • Pan, Guangming; Gao, Jiti; Yang, Yanrong Testing Independence for a Large Number of High-Dimensional Random Vectors, SSRN Electronic Journal (2013) | DOI:10.2139/ssrn.2233661
  • Jiang, DanDan; Bai, ZhiDong; Zheng, ShuRong Testing the independence of sets of large-dimensional variables, Science China. Mathematics, Volume 56 (2013) no. 1, pp. 135-147 | DOI:10.1007/s11425-012-4501-0 | Zbl:1256.62033
  • Bai, Zhidong; Jiang, Dandan; Yao, Jian-Feng; Zheng, Shurong Testing linear hypotheses in high-dimensional regressions, Statistics, Volume 47 (2013) no. 6, pp. 1207-1223 | DOI:10.1080/02331888.2012.708031 | Zbl:1440.62215

Cité par 58 documents. Sources : Crossref, zbMATH