Il est bien connu que les excursions d'un processus de diffusion peuvent être étudiées en considérant une certaine équation de Riccati associée au processus. On montre que, dans beaucoup de cas intéressants, certaines solutions de cette équation de Riccati peuvent être développées en fraction continue. On examine le contenu probabiliste de ce développement. Ces résultats sont illustrés par quelques exemples de diffusions en milieux aléatoires et déterministes.
It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.
Mots clés : diffusion processes, continued fraction, Riccati equation, excursions, Stieltjes transform
@article{AIHPB_2011__47_3_850_0, author = {Comtet, Alain and Tourigny, Yves}, title = {Excursions of diffusion processes and continued fractions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {850--874}, publisher = {Gauthier-Villars}, volume = {47}, number = {3}, year = {2011}, doi = {10.1214/10-AIHP390}, mrnumber = {2841077}, zbl = {1266.60138}, language = {en}, url = {http://www.numdam.org/articles/10.1214/10-AIHP390/} }
TY - JOUR AU - Comtet, Alain AU - Tourigny, Yves TI - Excursions of diffusion processes and continued fractions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 850 EP - 874 VL - 47 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/10-AIHP390/ DO - 10.1214/10-AIHP390 LA - en ID - AIHPB_2011__47_3_850_0 ER -
%0 Journal Article %A Comtet, Alain %A Tourigny, Yves %T Excursions of diffusion processes and continued fractions %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 850-874 %V 47 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/10-AIHP390/ %R 10.1214/10-AIHP390 %G en %F AIHPB_2011__47_3_850_0
Comtet, Alain; Tourigny, Yves. Excursions of diffusion processes and continued fractions. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 3, pp. 850-874. doi : 10.1214/10-AIHP390. http://www.numdam.org/articles/10.1214/10-AIHP390/
[1] The Classical Moment Problem and Some Related Questions in Analysis. Fitzmatgiz, Moscow, 1961; English transl., Oliver and Boyd, Edinburgh, 1965. | MR | Zbl
.[2] Lévy Processes and Stochastic Calculus. Cambridge Univ. Press, Cambridge, 2004. | MR | Zbl
.[3] Random walk in a one-dimensional random medium. Phys. A 164 (1990) 52-80. | MR
, and .[4] Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York, 1978. | MR | Zbl
and .[5] Classical diffusion in one-dimensional disordered lattice. Phys. Rev. Lett. 41 (1978) 185-187.
, and .[6] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[7] Comparaison entre temps d'atteinte et temps de séjour de certaines diffusions réelles. In Sém. Probabilités Strasbourg, XIX 291-296. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR | Zbl
.[8] Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359-377. | Numdam | MR | Zbl
and .[9] Application of Stieltjes theory for S-fractions to birth and death processes. Adv. in Appl. Probab. 15 (1983) 507-530. | MR | Zbl
and .[10] Handbook of Brownian Motion - Facts and Formulae. Birkhäuser, Basel, 1996. | MR | Zbl
and .[11] Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. 201 (1990) 285-341. | MR
, , and .[12] Associated Sturm-Liouville systems. Quart. J. Math. Oxford (2) 6 (1955) 121-127. | MR | Zbl
.[13] Solutions of the Riccati equation and their relation to the Toda lattice. J. Phys. A Math. Gen. 19 (1986) 1889-1898. | MR | Zbl
and .[14] First passage times and Sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. | MR | Zbl
and .[15] Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. Paris 94 (1882) 1456-1459. | JFM
.[16] Large Deviations. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[17] Wall and Siegmund duality relations for birth and death chains with reflecting barrier. J. Theoret. Probab. 10 (1997) 349-374. | MR | Zbl
, , and .[18] Some explicit Krein representations of certain subordinators, including the Gamma process. Publ. Res. Inst. Math. Sci. 42 (2006) 879-895. | MR | Zbl
and .[19] Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic Press, New York, 1976. | MR | Zbl
and .[20] De fractionibus continuis dissertatio. Comm. Acad. Sci. Petropol. 9 (1744) 98-137; English transl.: M. Wyman and B. Wyman. An essay on continued fractions. Math. Systems Theory 18 (1985) 295-328. | MR
.[21] The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions. Adv. in Appl. Probab. 32 (2000) 750-778. | MR | Zbl
and .[22] Electron levels in a one-dimensional lattice. Phys. Rev. 120 (1960) 1175-1189. | Zbl
and .[23] Excursions of birth and death processes, orthogonal polynomials, and continued fractions. J. Appl. Probab. 36 (1999) 752-770. | MR | Zbl
and .[24] Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10 (1979) 884-901. | MR | Zbl
and .[25] Diffusion Processes and Their Sample Paths. Springer, New York, 1974. | MR | Zbl
and .[26] Excursions into a new duality relation for diffusion processes. Elect. Comm. Probab. 1 (1996) 65-69. | MR | Zbl
.[27] The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 (1957) 489-546. | MR | Zbl
and .[28] Characterisation of the Lévy measures of inverse local times of gap diffusion. In Seminar on Stochastic Processes 53-78. Birkhäuser, Basel, 1981. | MR | Zbl
.[29] Essentials of Brownian Motion and Diffusion. Amer. Math. Soc., Providence, RI, 1981. | MR | Zbl
.[30] On asymptotic behaviour of the spectra of a one-dimensional Hamiltonian with a certain random coefficient. Publ. RIMS Kyoto Univ. 12 (1976) 447-492. | MR | Zbl
.[31] A diffusion process in a Brownian environment with drift. J. Math. Soc. Japan 49 (1997) 189-211. | MR | Zbl
and .[32] Krein's spectral theory of strings and generalized diffusion processes. In Functional Analysis in Markov Processes 235-259. Springer, New York, 1982. | MR | Zbl
and .[33] A characterisation of the generalised inverse Gaussian distribution by continued fractions. Z. Wahrsch. Werw. Gebiete 62 (1983) 485-489. | MR | Zbl
and .[34] Exact asymptotic results for persistence in the Sinai problem with arbitrary drift. Phys. Rev. E 66 (2002) 061105-061116. | MR
and .[35] Explicit invariant measures for products of random matrices. Trans. Amer. Math. Soc. 360 (2008) 3391-3427. | MR | Zbl
, and .[36] Padé approximants of random Stieltjes functions. Proc. Roy. Soc. A 463 (2007) 2813-2832. | MR | Zbl
, and .[37] Rational Approximation and Orthogonality. Nauk, Moscow, 1988; English transl., Amer. Math. Soc., Providence, RI, 1991. | MR | Zbl
and .[38] Stochastic Differential Equations. Springer, Berlin, 1998.
.[39] Bessel processes and infinitely divisible laws. In Stochastic Integrals 285-370. Lecture Notes in Math. 851. Springer, Berlin, 1981. | MR | Zbl
and .[40] Hitting, occupation and inverse local times of one-dimensional diffusions: Martingale and excursion approaches. Bernoulli 9 (2003) 1-24. | MR | Zbl
and .[41] Continuous Martingales and Brownian Motion. Springer, Berlin, 1999. | MR | Zbl
and .[42] One-dimensional diffusions and their exit spaces. Math. Scand. 54 (1984) 209-220. | MR | Zbl
.[43] Réflection entre deux diffusions conjuguées. C. R. Acad. Sci. Paris Ser. I 334 (2002) 1119-1124. | MR | Zbl
.[44] Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894) 1-122. | JFM | Numdam | MR
.[45] Generalized Ray-Knight theory and limit theorems for self-interacting random walks on ℤ1. Ann. Probab. 24 (1996) 1324-1367. | MR | Zbl
.Cité par Sources :