L'évolution d'un système aléatoire de particules est étudiée lorsque la taille des particules croît par coagulation binaire, chaque réaction de coagulation impliquant nécessairement une particule de taille minimale. Nous montrons qu'une version renormalisée du processus stochastique associé converge vers une limite déterministe et étudions l'évolution temporelle de la taille minimale pour les modèles stochastique et déterministe.
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
Mots clés : stochastic coalescence, min-driven clustering, hydrodynamical limit
@article{AIHPB_2011__47_2_329_0, author = {Basdevant, Anne-Laure and Lauren\c{c}ot, Philippe and Norris, James R. and Rau, Cl\'ement}, title = {A stochastic min-driven coalescence process and its hydrodynamical limit}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {329--357}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/09-AIHP349}, mrnumber = {2814413}, zbl = {1216.82024}, language = {en}, url = {http://www.numdam.org/articles/10.1214/09-AIHP349/} }
TY - JOUR AU - Basdevant, Anne-Laure AU - Laurençot, Philippe AU - Norris, James R. AU - Rau, Clément TI - A stochastic min-driven coalescence process and its hydrodynamical limit JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 329 EP - 357 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/09-AIHP349/ DO - 10.1214/09-AIHP349 LA - en ID - AIHPB_2011__47_2_329_0 ER -
%0 Journal Article %A Basdevant, Anne-Laure %A Laurençot, Philippe %A Norris, James R. %A Rau, Clément %T A stochastic min-driven coalescence process and its hydrodynamical limit %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 329-357 %V 47 %N 2 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/09-AIHP349/ %R 10.1214/09-AIHP349 %G en %F AIHPB_2011__47_2_329_0
Basdevant, Anne-Laure; Laurençot, Philippe; Norris, James R.; Rau, Clément. A stochastic min-driven coalescence process and its hydrodynamical limit. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 2, pp. 329-357. doi : 10.1214/09-AIHP349. http://www.numdam.org/articles/10.1214/09-AIHP349/
[1] Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. | MR | Zbl
.[2] The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. Comm. Math. Phys. 104 (1986) 657-692. | MR | Zbl
, and .[3] Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[4] Self-similarity in a cut-and-paste model of coarsening. Proc. Roy. Soc. London A 456 (2000) 1281-1290. | MR | Zbl
and .[5] Differential equation approximations for Markov chains. Probab. Surv. 5 (2008) 37-79. | MR | Zbl
and .[6] Probabilités et Potentiel, Chapters I and IV. Hermann, Paris, 1975. | MR | Zbl
and .[7] Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44 (1991) 6241-6251.
, and .[8] Gelation in coagulation and fragmentation models. Comm. Math. Phys. 231 (2002) 157-188. | MR | Zbl
, and .[9] Convergence results for a coarsening model using global linearization. J. Nonlinear Sci. 13 (2003) 311-346. | MR | Zbl
and .[10] Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys. 194 (1998) 541-567. | MR | Zbl
.[11] Spouge's conjecture on complete and instantaneous gelation. J. Statist. Phys. 96 (1999) 1049-1070. | MR | Zbl
.[12] The Lifshitz-Slyozov equation with encounters. Math. Models Methods Appl. Sci. 11 (2001) 731-748. | MR | Zbl
.[13] On coalescence equations and related models. In Modeling and Computational Methods for Kinetic Equations 321-356. P. Degond, L. Pareschi and G. Russo (Eds). Birkhäuser, Boston, 2004. | MR | Zbl
and .[14] Etude de la classe des opérateurs m-accrétifs de L1(Ω) et accrétifs dans L∞(Ω). Thèse de 3ème cycle, Université de Paris VI, 1977.
.[15] Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383 (2003) 95-212.
.[16] Coagulation in finite systems. J. Colloid Interface Sci. 65 (1978) 276-285.
.[17] Stochastic coalescence. Technometrics 10 (1968) 133-143. | MR
.[18] Dynamics and self-similarity in min-driven clustering. Trans. Amer. Math. Soc. To appear. | MR | Zbl
, and .[19] Markov Chains. Cambridge Univ. Press, Cambridge, 1997. | Zbl
.[20] Smoluchowski's coagulation equation: Uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent. Ann. Appl. Probab. 9 (1999) 78-109. | MR | Zbl
.[21] Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr. 17 (1916) 557-599.
.[22] Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92 (1917) 129-168.
.[23] An introduction to mathematical models of coagulation-fragmentation processes: A deterministic mean-field approach. Phys. D 222 (2006) 1-20. | MR | Zbl
.Cité par Sources :