Long-range self-avoiding walk converges to α-stable processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 20-42.

Nous considérons un modèle à longue portée de la marche aléatoire auto-évitante en dimension d > 2(α ∧ 2), où d est la dimension et α l'exposant de décroissance polynomiale de la fonction de couplage. Après un rééchelonnage approprié, nous démontrons la convergence vers un mouvement brownien pour α ≥ 2 et vers un processus de Lévy α-stable pour α < 2. Ce résultat complète celui de Slade [J. Phys. A 21 (1988) L417-L420] qui démontre la convergence vers le mouvement brownien pour une marche auto-évitante à plus proche voisin en grande dimension.

We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A 21 (1988) L417-L420], who proves convergence to brownian motion for nearest-neighbor self-avoiding walk in high dimension.

DOI : 10.1214/09-AIHP350
Classification : 82B41
Mots clés : self-avoiding walk, Lace expansion, α-stable processes, mean-field behavior
@article{AIHPB_2011__47_1_20_0,
     author = {Heydenreich, Markus},
     title = {Long-range self-avoiding walk converges to $\alpha $-stable processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {20--42},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {1},
     year = {2011},
     doi = {10.1214/09-AIHP350},
     zbl = {1210.82055},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/09-AIHP350/}
}
TY  - JOUR
AU  - Heydenreich, Markus
TI  - Long-range self-avoiding walk converges to $\alpha $-stable processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2011
SP  - 20
EP  - 42
VL  - 47
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/09-AIHP350/
DO  - 10.1214/09-AIHP350
LA  - en
ID  - AIHPB_2011__47_1_20_0
ER  - 
%0 Journal Article
%A Heydenreich, Markus
%T Long-range self-avoiding walk converges to $\alpha $-stable processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2011
%P 20-42
%V 47
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/09-AIHP350/
%R 10.1214/09-AIHP350
%G en
%F AIHPB_2011__47_1_20_0
Heydenreich, Markus. Long-range self-avoiding walk converges to $\alpha $-stable processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 20-42. doi : 10.1214/09-AIHP350. http://www.numdam.org/articles/10.1214/09-AIHP350/

[1] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. | MR | Zbl

[2] D. C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys. 97 (1985) 125-148. | MR | Zbl

[3] L.-C. Chen and A. Sakai. Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Probab. To appear. | MR

[4] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Related Fields 142 (2008) 151-188. | MR | Zbl

[5] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation. Probab. Theory Related Fields 145 (2009) 435-458. | MR | Zbl

[6] Y. Cheng. Long range self-avoiding random walks above critical dimension. Ph.D. thesis, Temple University, August 2000.

[7] E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193 (1998) 69-104. | MR | Zbl

[8] T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147 (1992) 101-136. | MR | Zbl

[9] M. Heydenreich, R. Van Der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 (2008) 1001-1049. | MR | Zbl

[10] R. Van Der Hofstad. Spread-out oriented percolation and related models above the upper critical dimension: Induction and superprocesses. In Ensaios Matemáticos [Mathematical Surveys] 9 91-181. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. | MR | Zbl

[11] R. Van Der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122 (2002) 389-430. | MR | Zbl

[12] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 1997. | MR | Zbl

[13] L. B. Koralov and Ya. G. Sinai. Theory of Probability and Random Processes, 2nd edition. Springer, Berlin, 2007. | MR | Zbl

[14] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, MA, 1993. | MR | Zbl

[15] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. | MR | Zbl

[16] G. Slade. Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A 21 (1988) L417-L420. | MR | Zbl

[17] G. Slade. The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab. 17 (1989) 91-107. | MR | Zbl

[18] G. Slade. The Lace Expansion and Its Applications. Lecture Notes in Mathematics 1879. Springer, Berlin, 2006. | MR | Zbl

[19] W.-S. Yang and D. Klein. A note on the critical dimension for weakly self-avoiding walks. Probab. Theory Related Fields 79 (1988) 99-114. | MR | Zbl

Cité par Sources :