On s'intéresse aux marches aléatoires dans un environnement défini par des variables de Dirichlet i.i.d. en chaque sommet de ℤd ou, de façon équivalente, aux marches aléatoires renforcées par arêtes orientées sur ℤd. Les paramètres de ce modèle sont un 2d-uplet de réels positifs indexé par les vecteurs unitaires de ℤd. On démontre que, dès que ces poids ne sont pas symétriques, la marche aléatoire est transiente dans une direction (c'est-à-dire qu'elle satisfait Xn ⋅ ℓ →n +∞ pour un certain ℓ) avec probabilité positive. En dimension 2, la loi du 0-1 de [Ann. Probab. 29 (2001) 1716-1732] permet de renforcer ce résultat en transience directionnelle presque-sûre. La preuve repose sur la propriété de stabilité des environnements de Dirichlet par renversement temporel introduite dans [Random walks in random Dirichlet environment are transient in dimension d≥3 (2009), Preprint] et dont on donne une nouvelle démonstration, de nature plus probabiliste, en première partie du présent article.
We consider random walks in a random environment given by i.i.d. Dirichlet distributions at each vertex of ℤd or, equivalently, oriented edge reinforced random walks on ℤd. The parameters of the distribution are a 2d-uplet of positive real numbers indexed by the unit vectors of ℤd. We prove that, as soon as these weights are nonsymmetric, the random walk is transient in a direction (i.e., it satisfies Xn ⋅ ℓ →n +∞ for some ℓ) with positive probability. In dimension 2, this result is strenghened to an almost sure directional transience thanks to the 0-1 law from [Ann. Probab. 29 (2001) 1716-1732]. Our proof relies on the property of stability of Dirichlet environment by time reversal proved in [Random walks in random Dirichlet environment are transient in dimension d ≥ 3 (2009), Preprint]. In a first part of this paper, we also give a probabilistic proof of this property as an alternative to the change of variable computation used initially.
Mots clés : random walk, random environment, Dirichlet distribution, directional transience, time reversal
@article{AIHPB_2011__47_1_1_0, author = {Sabot, Christophe and Tournier, Laurent}, title = {Reversed {Dirichlet} environment and directional transience of random walks in {Dirichlet} environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1--8}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/09-AIHP344}, mrnumber = {2779393}, zbl = {1209.60055}, language = {en}, url = {http://www.numdam.org/articles/10.1214/09-AIHP344/} }
TY - JOUR AU - Sabot, Christophe AU - Tournier, Laurent TI - Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1 EP - 8 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/09-AIHP344/ DO - 10.1214/09-AIHP344 LA - en ID - AIHPB_2011__47_1_1_0 ER -
%0 Journal Article %A Sabot, Christophe %A Tournier, Laurent %T Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1-8 %V 47 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/09-AIHP344/ %R 10.1214/09-AIHP344 %G en %F AIHPB_2011__47_1_1_0
Sabot, Christophe; Tournier, Laurent. Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 1-8. doi : 10.1214/09-AIHP344. http://www.numdam.org/articles/10.1214/09-AIHP344/
[1] Multiscale analysis of exit distributions for random walks in random environments. Probab. Theory Related Fields 138 (2007) 581-645. | MR | Zbl
and .[2] Edge oriented reinforced random walks and RWRE. C. R. Math. Acad. Sci. Paris 335 (2002) 941-946. | MR | Zbl
and .[3] Random walks in a Dirichlet environment. Electron. J. Probab. 11 (2006) 802-817 (electronic). | MR | Zbl
and .[4] Generalized random walk in a random environment. Ann. Probab. 9 (1981) 753-768. | MR | Zbl
.[5] Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 (1988) 1229-1241. | MR | Zbl
.[6] Random walks in random Dirichlet environment are transient in dimension d≥3. Preprint, 2009. Available at arXiv:0905.3917v1[math.PR].
.[7] Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes XVII 203-266 (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004. | MR | Zbl
.[8] Integrability of exit times and ballisticity for random walks in Dirichlet environment. Electron. J. Probab. 14 (2009) 431-451 (electronic). | MR | Zbl
.[9] The zero-one law for planar random walks in i.i.d. random environments revisited. Electron. Comm. Probab. 12 (2007) 326-335 (electronic). | MR | Zbl
.[10] A zero-one law for planar random walks in random environment. Ann. Probab. 29 (2001) 1716-1732. | MR | Zbl
and .Cité par Sources :