Recently the renormalization group predictions on the effect of disorder on pinning models have been put on mathematical grounds. The picture is particularly complete if the disorder is relevant or irrelevant in the Harris criterion sense: the question addressed is whether quenched disorder leads to a critical behavior which is different from the one observed in the pure, i.e. annealed, system. The Harris criterion prediction is based on the sign of the specific heat exponent of the pure system, but it yields no prediction in the case of vanishing exponent. This case is called marginal, and the physical literature is divided on what one should observe for marginal disorder, notably there is no agreement on whether a small amount of disorder leads or not to a difference between the critical point of the quenched system and the one for the pure system. In [Comm. Pure Appl. Math. 63 (2010) 233-265] we have proven that the two critical points differ at marginality of at least exp(-c / β4), where c > 0 and β2 is the disorder variance, for β ∈ (0, 1) and gaussian IID disorder. The purpose of this paper is to improve such a result: we establish in particular that the exp(-c / β4) lower bound on the shift can be replaced by exp(-c(b) / βb), c(b) > 0 for b > 2 (b = 2 is the known upper bound and it is the result claimed in [J. Stat. Phys. 66 (1992) 1189-1213]), and we deal with very general distribution of the IID disorder variables. The proof relies on coarse graining estimates and on a fractional moment change of measure argument based on multi-body potential modifications of the law of the disorder.
Récemment, les prédictions issues des méthodes de groupe de renormalisation concernant l'influence du désordre pour les modèles d'accrochage ont été rendus rigoureuses mathématiquement. La description du phénomène est particulièrement complète dans le cas où le désordre est pertinent ou non-pertinent au sens du critère de Harris: on étudie si le désordre gelé engendre un comportement critique différent de celui que l'on observe pour le système pur, i.e. moyenné. Le critère de Harris se base sur le signe de l'exposant de la chaleur spécifique du système pur pour déterminer l'influence du désordre, mais ne prédit rien dans le cas où cet exposant vaut zéro. Ce cas est dit marginal et il n'y a pas de consensus dans la littérature physique sur ce que l'on devrait observer pour le système désordonné marginal; en particulier, il y a une controverse pour déterminer si un désordre de faible amplitude engendre ou non un déplacement du point critique du système avec désordre gelé par rapport à celui du système pur. Dans [Comm. Pure Appl. Math. 63 (2010) 233-265], nous avons démontré que, dans le cas marginal, la différence entre les deux points critiques est au moins d'ordre exp(-c / β4), où c > 0 et β2 est la variance du désordre, pour β ∈ (0, 1) dans le cas d'un désordre gaussien IID. L'objectif de cet article est d'améliorer le résultat précédent: en particulier nous montrons que la borne inférieure exp(-c / β4) pour le déplacement du point critique peut être remplacée par exp(-c(b) / βb), c(b) > 0 pour tout b > 2 (b = 2 est la borne supérieure connue, et le résultat prédit dans [J. Stat. Phys. 66 (1992) 1189-1213]), et nous généralisons la preuve à des désordres IID très généraux. La démonstration s'appuie sur des estimées obtenues par coarse graining, et sur l'estimation de moments non-entiers de la fonction de partition, en modifiant la loi du désordre en y appliquant un potentiel multicorps.
Keywords: disordered pinning models, Harris criterion, marginal disorder, many-body interactions
@article{AIHPB_2011__47_1_148_0, author = {Giacomin, Giambattista and Lacoin, Hubert and Toninelli, Fabio Lucio}, title = {Disorder relevance at marginality and critical point shift}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {148--175}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/10-AIHP366}, mrnumber = {2779401}, zbl = {1210.82036}, language = {en}, url = {https://www.numdam.org/articles/10.1214/10-AIHP366/} }
TY - JOUR AU - Giacomin, Giambattista AU - Lacoin, Hubert AU - Toninelli, Fabio Lucio TI - Disorder relevance at marginality and critical point shift JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 148 EP - 175 VL - 47 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/10-AIHP366/ DO - 10.1214/10-AIHP366 LA - en ID - AIHPB_2011__47_1_148_0 ER -
%0 Journal Article %A Giacomin, Giambattista %A Lacoin, Hubert %A Toninelli, Fabio Lucio %T Disorder relevance at marginality and critical point shift %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 148-175 %V 47 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/10-AIHP366/ %R 10.1214/10-AIHP366 %G en %F AIHPB_2011__47_1_148_0
Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio Lucio. Disorder relevance at marginality and critical point shift. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 148-175. doi : 10.1214/10-AIHP366. https://www.numdam.org/articles/10.1214/10-AIHP366/
[1] The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 (2008) 117-146. | MR | Zbl
.[2] Quenched and annealed critical points in polymer pinning models. Comm. Math. Phys. 291 (2009) 659-689. | MR | Zbl
and .[3] Equality of critical points for polymer depinning transitions with loop exponent one. Ann. Appl. Probab. 20 (2010) 356-366. | MR | Zbl
and .[4] Regular Variation. Cambridge Univ. Press, Cambridge, 1987. | MR | Zbl
, and .[5] Probability limit theorems assuming only the first moment I. Mem. Amer. Math. Soc. 6 (1951) 1-19. | MR | Zbl
and .[6] Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34 (2006) 1746-1770. | MR | Zbl
and .[7] Fractional moment bounds and disorder relevance for pinning models. Comm. Math. Phys. 287 (2009) 867-887. | MR
, , and .[8] Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66 (1992) 1189-1213. | MR | Zbl
, and .[9] One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | MR | Zbl
.[10] Walks, walls, wetting, and melting. J. Stat. Phys. 34 (1984) 667-729. | MR | Zbl
.[11] Wetting of a disordered substrate: Exact critical behavior in two dimensions. Phys. Rev. Lett. 57 (1986) 2184-2187.
, , and .[12] Random Polymer Models. Imperial College Press, London, 2007. | MR | Zbl
.[13] Renewal sequences, disordered potentials, and pinning phenomena. In Spin Glasses: Statics and Dynamics 235-270. Progress in Probability 62. Birkhäuser, Basel, 2009. | MR | Zbl
.[14] Marginal relevance of disorder for pinning models. Comm. Pure Appl. Math. 63 (2010) 233-265. | MR | Zbl
, and .[15] Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 (2006) 1-16; Smoothing of depinning transitions for directed polymers with quenched disorder. Phys. Rev. Lett. 96 (2006) 070602. | MR | Zbl
and .[16] On the irrelevant disorder regime of pinning models. Ann. Probab. 37 (2009) 1841-1873. | MR | Zbl
and .[17] Effect of random defects on the critical behaviour of ising models. J. Phys. C 7 (1974) 1671-1692.
.[18] Hierarchical pinning model with site disorder: Disorder is marginally relevant. Probab. Theory Related Fields. To appear. Available at arXiv:0807.4864 [math.PR]. | MR | Zbl
.[19] A replica-coupling approach to disordered pinning models. Comm. Math. Phys. 280 (2008) 389-401. | MR | Zbl
.[20] Coarse graining, fractional moments and the critical slope of random copolymers. Electron. J. Probab. 14 (2009) 531-547. | MR | Zbl
.- Scaling limit of the disordered generalized Poland-Scheraga model for DNA denaturation, Probability Theory and Related Fields, Volume 190 (2024) no. 1-2, pp. 179-258 | DOI:10.1007/s00440-024-01304-1 | Zbl:1547.60083
- The continuum directed polymer in Lévy noise, Journal de l'École Polytechnique – Mathématiques, Volume 9 (2022), pp. 213-280 | DOI:10.5802/jep.182 | Zbl:1482.82038
- Influence of disorder on DNA denaturation: the disordered generalized Poland-Scheraga model, Electronic Journal of Probability, Volume 26 (2021), p. 43 (Id/No 10) | DOI:10.1214/20-ejp563 | Zbl:1491.60180
- Disorder and denaturation transition in the generalized Poland-Scheraga model, Annales Henri Lebesgue, Volume 3 (2020), pp. 299-339 | DOI:10.5802/ahl.34 | Zbl:1451.60103
- Results and conjectures on a toy model of depinning, Moscow Mathematical Journal, Volume 20 (2020) no. 4, pp. 695-709 | Zbl:1473.60122
- Free energy of directed polymers in random environment in
-dimension at high temperature, Electronic Journal of Probability, Volume 24 (2019), p. 43 (Id/No 50) | DOI:10.1214/19-ejp292 | Zbl:1419.82078 - Marginal Relevance for the
-Stable Pinning Model, Stochastic Dynamics Out of Equilibrium, Volume 282 (2019), p. 597 | DOI:10.1007/978-3-030-15096-9_23 - Pinning of a renewal on a quenched renewal, Electronic Journal of Probability, Volume 23 (2018), p. 48 (Id/No 6) | DOI:10.1214/18-ejp136 | Zbl:1390.60341
- Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, Journal of the Institute of Mathematics of Jussieu, Volume 17 (2018) no. 2, pp. 305-346 | DOI:10.1017/s1474748015000481 | Zbl:1405.60139
- The high-temperature behavior for the directed polymer in dimension
, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 53 (2017) no. 1 | DOI:10.1214/15-aihp721 - The rounding of the phase transition for disordered pinning with stretched exponential tails, The Annals of Applied Probability, Volume 27 (2017) no. 2 | DOI:10.1214/16-aap1220
- Universality for the pinning model in the weak coupling regime, The Annals of Probability, Volume 45 (2017) no. 4 | DOI:10.1214/16-aop1109
- On the critical curves of the pinning and copolymer models in correlated Gaussian environment, Electronic Journal of Probability, Volume 20 (2015) no. none | DOI:10.1214/ejp.v20-3514
- The critical curves of the random pinning and copolymer models at weak coupling, Communications in Mathematical Physics, Volume 326 (2014) no. 2, pp. 507-530 | DOI:10.1007/s00220-013-1849-0 | Zbl:1320.82074
- A remark on the bound for the free energy of directed polymers in random environment in
dimension, Journal of Mathematical Physics, Volume 55 (2014) no. 9, p. 093304 | DOI:10.1063/1.4895760 | Zbl:1302.82135 - Pinning model in random correlated environment: appearance of an infinite disorder regime, Journal of Statistical Physics, Volume 155 (2014) no. 3, pp. 544-570 | DOI:10.1007/s10955-014-0965-3 | Zbl:1297.82043
- The depinning transition in presence of disorder: a toy model, Journal of Statistical Physics, Volume 156 (2014) no. 2, pp. 268-290 | DOI:10.1007/s10955-014-1006-y | Zbl:1312.82005
- Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster, Probability Theory and Related Fields, Volume 159 (2014) no. 3-4, pp. 777-808 | DOI:10.1007/s00440-013-0520-1 | Zbl:1298.82030
- Path properties of the disordered pinning model in the delocalized regime, The Annals of Applied Probability, Volume 24 (2014) no. 2, pp. 599-615 | DOI:10.1214/13-aap930 | Zbl:1291.82144
- Hierarchical pinning model in correlated random environment, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 49 (2013) no. 3, pp. 781-816 | DOI:10.1214/12-aihp493 | Zbl:1281.82013
- A note on the discrete Gaussian free field with disordered pinning on
, , Stochastic Processes and their Applications, Volume 123 (2013) no. 9, pp. 3542-3559 | DOI:10.1016/j.spa.2013.04.022 | Zbl:1294.60119 - Variational characterization of the critical curve for pinning of random polymers, The Annals of Probability, Volume 41 (2013) no. 3B, pp. 1767-1805 | DOI:10.1214/11-aop727 | Zbl:1281.60083
- Random pinning model with finite range correlations: disorder relevant regime, Stochastic Processes and their Applications, Volume 122 (2012) no. 10, pp. 3560-3579 | DOI:10.1016/j.spa.2012.06.007 | Zbl:1252.82048
- Sharp critical behavior for pinning models in a random correlated environment, Stochastic Processes and their Applications, Volume 122 (2012) no. 4, pp. 1397-1436 | DOI:10.1016/j.spa.2011.12.007 | Zbl:1266.82080
- Disorder relevance for the random walk pinning model in dimension 3, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 47 (2011) no. 1 | DOI:10.1214/10-aihp374
- Excursions and Local Limit Theorems for Bessel-like Random Walks, Electronic Journal of Probability, Volume 16 (2011) no. none | DOI:10.1214/ejp.v16-848
- New bounds for the free energy of directed polymers in dimension
and , Communications in Mathematical Physics, Volume 294 (2010) no. 2, pp. 471-503 | DOI:10.1007/s00220-009-0957-3 | Zbl:1227.82098 - Marginal relevance of disorder for pinning models, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 2, pp. 233-265 | DOI:10.1002/cpa.20301 | Zbl:1189.60173
- On the Critical Point of the Random Walk Pinning Model in Dimension d=3, Electronic Journal of Probability, Volume 15 (2010) no. none | DOI:10.1214/ejp.v15-761
Cité par 29 documents. Sources : Crossref, zbMATH