Nous étudions γk(x2, …, xk; t), le temps local renormalisé d'auto-intersection d'ordre k du mouvement brownien dans R1. Notre résultat principal montre que γk(x2, …, xk; t) est presque sûrement continûment différentiable dans les variables spatiales.
We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.
Mots clés : continuous differentiability, intersection local time, brownian motion
@article{AIHPB_2010__46_4_1025_0, author = {Rosen, Jay S.}, title = {Continuous differentiability of renormalized intersection local times in $R^1$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1025--1041}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {2010}, doi = {10.1214/09-AIHP338}, zbl = {1210.60084}, language = {en}, url = {http://www.numdam.org/articles/10.1214/09-AIHP338/} }
TY - JOUR AU - Rosen, Jay S. TI - Continuous differentiability of renormalized intersection local times in $R^1$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 1025 EP - 1041 VL - 46 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/09-AIHP338/ DO - 10.1214/09-AIHP338 LA - en ID - AIHPB_2010__46_4_1025_0 ER -
%0 Journal Article %A Rosen, Jay S. %T Continuous differentiability of renormalized intersection local times in $R^1$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 1025-1041 %V 46 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/09-AIHP338/ %R 10.1214/09-AIHP338 %G en %F AIHPB_2010__46_4_1025_0
Rosen, Jay S. Continuous differentiability of renormalized intersection local times in $R^1$. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 4, pp. 1025-1041. doi : 10.1214/09-AIHP338. http://www.numdam.org/articles/10.1214/09-AIHP338/
[1] Intersection local times and Tanaka formulas. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 419-452. | Numdam | MR | Zbl
and .[2] Self-intersection gauge for random walks and for Brownian motion. Ann. Probab. 16 (1988) 1-57. | MR | Zbl
.[3] Propriétés d'intersection des marches aléatoires, I. Comm. Math. Phys. 104 (1986) 471-507. | MR | Zbl
.[4] Fluctuation results for the Wiener sausage. Ann. Probab. 16 (1988) 991-1018. | MR | Zbl
.[5] Some properties of planar Brownian motion. In École d' Été de Probabilités de St. Flour XX, 1990. 111-235. Lecture Notes in Math. 1527 Springer, Berlin, 1992. | MR | Zbl
.[6] Continuous Martingales and Brownian Motion. Springer, Berlin, 1998. | Zbl
and .[7] Tanaka's formula for multiple intersections of planar Brownian motion. Stochastic Process. Appl. 23 (1986) 131-141. | MR | Zbl
.[8] A renormalized local time for the multiple intersections of planar Brownian motion. In Séminaire de Probabilités XX, 1984/85. 515-531. Lecture Notes in Math. 1204. Springer, Berlin, 1986. | Numdam | MR | Zbl
.[9] Derivatives of self-intersection local times. In Séminaire de Probabilités, XXXVIII 263-281. Lecture Notes in Math. 1857. Springer, New York, 2005. | MR | Zbl
.[10] Joint continuity and a Doob-Meyer type decomposition for renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 143-176. | Numdam | MR | Zbl
.[11] Joint continuity of renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 671-700. | Numdam | MR | Zbl
.[12] Dirichlet processes and an intrinsic characterization of renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 403-420. | Numdam | MR | Zbl
.[13] A stochastic calculus proof of the CLT for the L2 modulus of continuity of local time. Preprint. | MR | Zbl
.[14] Appendix to Euclidian quantum field theory by K. Symanzyk. In Local Quantum Theory. R. Jost (ed.). Academic Press, New York, 1969.
.Cité par Sources :