On étudie la vitesse exacte de convergence de certains schémas d'approximation associés à des équations différentielles stochastiques scalaires dirigées par le mouvement brownien fractionnaire B. On utilise le comportement asymptotique des variations à poids de B, et la limite de l'erreur entre la solution et son approximation est calculée de façon explicite.
Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.
Mots-clés : fractional brownian motion, weighted power variations, stochastic differential equation, Milstein's type scheme, exact rate of convergence
@article{AIHPB_2009__45_4_1085_0, author = {Gradinaru, Mihai and Nourdin, Ivan}, title = {Milstein's type schemes for fractional {SDEs}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1085--1098}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP196}, mrnumber = {2572165}, zbl = {1197.60070}, language = {en}, url = {http://www.numdam.org/articles/10.1214/08-AIHP196/} }
TY - JOUR AU - Gradinaru, Mihai AU - Nourdin, Ivan TI - Milstein's type schemes for fractional SDEs JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 1085 EP - 1098 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/08-AIHP196/ DO - 10.1214/08-AIHP196 LA - en ID - AIHPB_2009__45_4_1085_0 ER -
%0 Journal Article %A Gradinaru, Mihai %A Nourdin, Ivan %T Milstein's type schemes for fractional SDEs %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 1085-1098 %V 45 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/08-AIHP196/ %R 10.1214/08-AIHP196 %G en %F AIHPB_2009__45_4_1085_0
Gradinaru, Mihai; Nourdin, Ivan. Milstein's type schemes for fractional SDEs. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1085-1098. doi : 10.1214/08-AIHP196. http://www.numdam.org/articles/10.1214/08-AIHP196/
[1] Power variation of some integral fractional processes. Bernoulli 12 (2006) 713-735. | MR | Zbl
, and .[2] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and .[3] Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1-40. | MR | Zbl
.[4] Approximation at first and second order of the m-variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1-26. | MR | Zbl
and .[5] m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR | Zbl
, , and .[6] Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994.
.[7] On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716-721. | MR | Zbl
and .[8] Wong-Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331-346. Academic Press, Boston, MA, 1991. | MR | Zbl
and .[9] Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271-296. | MR | Zbl
and .[10] Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl
.[11] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
.[12] The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. | MR | Zbl
and .[13] Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-475. | MR | Zbl
.[14] Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294-2333. | MR | Zbl
.[15] Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899. | MR | Zbl
and .[16] Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639.
, , .[17] Schémas d'approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611-614. | MR | Zbl
.[18] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181-197. | MR | Zbl
.[19] Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229-1256. | MR
and .[20] Correcting Newton-Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695-711. | MR | Zbl
and .[21] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR | Zbl
and .[22] Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403-421. | MR | Zbl
and .[23] Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275-306. | MR | Zbl
.[24] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl
.Cité par Sources :